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1. Introduction

r Fibers are waveguides for transporting light (beams)
signals

r Application in a wide range of fields
r Voice, visual & data Communications
r Remote Sensing

r Detecting, measuring & characterizing electromagnetic (EM)
energy coming from distant objects

r Geologic, agriculture, land use, meteorology etc.

r This EM maybe collected and transported on fibers

r Fiber-optic displays (e.g. speed-limit signs on
motorways)

r Cheaper to operate than neon lights
r No annoying flickering or buzz noise (no interference from

other EM sources)

r Safe and withstands extreme weather conditions
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1. Introduction
r Signals transmitted on fibers are within the infrared region of the EM

spectrum
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1. Introduction
r An optical fiber consists of two different types of highly pure, solid glass:

r core
r cladding

r Lightwaves are guided to the other end of the fiber by being reflected
within the core (total internal reflection)

r  The refractive index of the core is higher than the cladding
r In this way, the fiber core acts as a waveguide for the transmitted light by
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1.1 Fiber Types
r There are two main fiber types:

r Step index (multimode, single mode)
r  Step index fiber is so called because the refractive index of the fiber 'steps" up as

we move from the cladding to the core of the fiber
r Certain ray directions can actually travel down the fiber. These are called the "Fiber

Mode”
r In a multimode fiber many different modes are supported by the fiber. This is shown

in the diagram below
r Because its core is so narrow Single Mode Fiber (SMF) can support only one mode.

This is called the "Lowest Order Mode”
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r Graded index (multimode)
r Has a different core structure from single mode and multimode fiber
r In a graded index fiber the value of the refractive index changes from the centre of the

core onwards (also called a Quadratic Profile)
r  The refractive index of the core is proportional to the square of the distance from the

centre of the fiber
r No cladding

r Is actually a multimode fiber because it can support more than one fiber mode
r The gradient in the refractive index gradually bends the rays back towards the axis

1.1 Fiber Types
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r The international standard for the cladding diameter of optical fibers is
125 microns (µm)

r This compatibility is important in that it allows fibers to fit into standard
connectors and splices

r The differences among fibers lie in their core sizes
r Standard Singlemode fibers are manufactured with the smallest core size,

approximately 810 µm in diameter
r For multimode fibers, the most widely used sizes are 50 µm and 62.5 µm.
r Larger core sizes are easier to couple and interconnect.

1.1 Fiber Types
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r Optical fiber manufacturing consists of three primary steps: laydown,
consolidation, and draw

r In the laydown step
r A soot preform is made from ultrapure vapors as they travel through a traversing

burner and react in the flame to form fine soot particles of silica and germania
r These particles are deposited on the surface of a rotating target rod.
r  The core material is deposited first, followed by the pure silica cladding.

1.2 Fabrication
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r Consolidation Step
r When deposition is complete, the target rod is removed from the center of the

porous preform, and the preform is placed into a consolidation furnace
r The water vapor is removed from the preform
r This high-temperature consolidation step sinters the preform into a solid,

dense, and transparent glass.

1.2 Fabrication
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r The finished glass preform is placed in a draw tower and drawn into a
continuous strand of glass fiber

r Fiber on these spools is
r proof-tested to ensure the strength of each fiber,
r cut to length,
r and measured for performance of relevant optical and geometrical parameters

1.2 Fabrication
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1.3 Cable Packaging

r There are generally five elements that make up the construction of a
fiber-optic strand or cable:

r The core ⇒ the optic core is the light carrying element at the center of the
optical fiber, commonly made from a combination of silica and germania

r Optic cladding ⇒ made of pure silica
r Buffer material ⇒ used to help shield the core and cladding from damage
r Strength material ⇒ preventing stretch problems when the fiber cable is

being pulled
r Outer jacket ⇒ protect against abrasion, solvents, and other contaminants.
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r Loose-tube cable,
r used in the majority of outside-plant installations
r Typically holds up to 12 fibers per buffer tube with a maximum per cable

fiber count of more than 200 fibers.
r Modular buffer-tube design permits easy drop-off of groups of fibers at

intermediate points, without interfering with other protected buffer tubes
being routed to other locations.

r Design also helps in the identification and administration of fibers in the
system.

1.3 Cable Packaging
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r Tight-tube cables
r Primarily used inside buildings
r Multi-fiber, tight-buffered cables often are used for intra-building and risers

1.3 Cable Packaging
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r Tactical (military) cables utilizes a tight buffer configuration in an all
dielectric construction.

r Tight buffer design offers increased ruggedness, ease of handling and
connectorization.

r Absence of metallic components
r decreases the possibility of detection by enemies
r minimizes system problems associated with electromagnetic interference.

1.3 Cable Packaging
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r Submarine (undersea) cables are more costly (20 $ per metre-4 fibers)
r Terrestrial cables (16-fiber tight-tube cables is 4 $ per metre)

r More expensive to repair, therefore robustly designed
r Tough light-weight single armoured cable for most routes
r Heavier (> 500 kg/km) double-armoured cables for near shores/coasts

1.3 Cable Packaging
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r Submarine cables laid by a ship towing a submarine cable plough
r The plough digs the seabed 2 metres deep throughout the route
r Laying of the cable is done simultaneously

1.3 Cable Packaging
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2. Fiber Impairments
r Fiber waveguides exhibit three properties that cause impairment of a in

communications
r fiber attenuation
r fiber dispersion
r fiber nonlinear effects
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2.1 fiber Attenuation

r Signal transmitted over fiber link has its power reduced by
r Loss in transferring light from source-to-fiber and fiber-to-receiver

r Connector (typically 0.5 dB) and splice losses (around 0.1 dB)
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Optical
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fiber Optical 
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connector splices
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2.1 fiber Attenuation

r fiber loss, with attenuation coefficient being

where L is fiber length

Fig. Attenuation characteristics of a standard single-mode fibers (SMF)  
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2.1 fiber Attenuation

r Improvements in attenuation at 1.4 µm obtained by removing OH- ions
r Example is Lucent’s AllWave fiber

r This provide a transmission window of over 200 nm

Fig. Singlemode fiber attenaution improvements
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2.2 Dispersion

r Dispersion causes pulse smearing (hence intersymbol interference)
r Chromatic dispersion is the most damaging mechanism, consists of

r Waveguide dispersion⇒Wavelength-dependent power distribution between
core and cladding

r Material dispersion ⇒ Index of refraction is dependent upon wavelength,
therefore different wavelengths will travel down an optical fiber at different
velocities

Fig. Chromatic dispersion in standard single-mode fibers
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r Others include
r modal dispersion : significant only for multimode fibers.
r polarization mode dispersion (PMD): only significant for very long distance

fiber links

Fig. Distance and bit rate limits due to dispersion. Source spectral
widths of 0 and 1 nm considered for chromatic dispersion

2.2 Dispersion
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r Dispersion reduction solutions
r Using dispersion shifted fiber (DSF) with the design altered to shift the zero

dispersion wavelength to 1550nm
r Using dispersion compensating fiber (DCF) with a negative dispersion slope at

each amplifier location

Fig. Dispersion Compensation using DCF
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r Wavelength-division multiplexing (WDM) is basically a multiplexing
technique in the optical domain

r Enables the combination of a number of wavelength channels (or optical
frequencies) onto a single fiber link,

r It is essentially frequency division multiplexing (FDM) at optical carrier
frequencies (~ hundreds of THz),

fiber
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r Dispersion varies for each channel
r In WDM (multi-channel) systems, its difficult to compensate all channels using

a common DCF
r Alternative would be to demultiplex and perform compensation for each

channel individually

Fig. Dispersion compensation of WDM systems
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2.3 Fiber Nonlinearities

r With increased optical power levels, fibers exhibit nonlinear effects
due to scattering effects and refractive index variation of fiber
medium

r This nonlinear behaviour of fibers can place some limitations on
communication system design

r The nonlinear effects include
r Stimulated Brillouin Scattering (SBS)
r Stimulated Raman Scattering (SRS)
r Four Wave Mixing (FWM)
r Self-Phase Modulation (SPM)
r Cross-Phase Modulation (CPM)

r SBS, SRS and FWM effects provide gain to some channels at the
expense of depleting power from some other channels

r The longer the link length the more the interactions and the worse the
effects of nonlinearities
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r To model the effects of nonlinearities a model is used that assumes the
power is constant over a certain “effective length” Le

where is α the attenuation coefficient and L is the actual link length

r In amplified systems, effective length is sum of effective length of each span
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2.3 Fiber Nonlinearities
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r Similarly, since power is not uniformly distributed in cross-section of a
fiber, we use effective cross-sectional area Ae

r This is related to cross-section intensity distribution I(r, θ)

where r and θ are the polar co-ordinates

r The power level at which the effects of nonlinearity becomes significant
is known as the threshold power

r One should transmit signal below threshold power
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2.3.1 Stimulated Brillouin Scattering

r SBS doesn’t cause interaction for channel spacing >> 20 MHz
r Distorts signal by producing backwards gain (towards source)
r The SBS is characterised by a approximate gain coefficient gB=4 x 10-11

m/W at all wavelengths
r Assuming a narrow source linewidth, the threshold power due to SBS is

where b is a polarisation dependent constant lying between 1 and 2 depending
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2.3.2 Stimulated Raman Scattering

r SRS causes power to be transferred from lower to higher wavelength
channels

r Its characteristic gain coefficient is dependent on wavelength spacing (∆λs)
r Peak at 1.55µm is gR=6 x 10-14 m/W

r Coupling occurs in both directions of propagation

r For a system of W equally spaced wavelength channels, the power
coupled from channel 0 to other channels is

where ∆λc is the Raman gain bandwidth (between 80 and 120 nm)
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2.3.2 Stimulated Raman Scattering

r Assuming that there is only
negligible dispersion in the
system, the threshold power is

r With dispersion the threshold
power is doubled!
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Fig. Power limitations due to SRS and
SBS for a WDM system. Channel
spacing δv is assumed to be 100 GHz
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2.3.3 Four-Wave Mixing

r Signals at three frequencies ωi , ωj and ωk combine to produce signals
which include a damaging signal at frequency

r This signal may interfere with one of the existing signals

   , , kjjikjiijk ≠≠−+= ωωωω

Fig. FWM terms caused by  beating between ωi , ωj and ωk
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2.3.3 Four-Wave Mixing

r Unfortunately FWM efficiency is enhanced by the lack of dispersion
and/or narrow channel spacing

r This is more significant for WDM systems using DSF (D � 0 ps/nm-km)
r Not a major problem with SMF (D � 17 ps/nm-km)
r Necessitated the development of non-zero dispersion shifted fibers (NZDSF)

that compensates for dispersion & avoids FWM (D between 1-6 ps/nm-km)

Fig. Limitation on the maximum power per channel due to FWM



EMU/S-72.130/FiberCables/Feb0135/51
     

2.3.4 Self- and Cross-phase Modulation

r Fluctuations in optical power causes changes in phase of the signal
r leads to higher dispersion penalties
r Self phase modulation (SPM): converts power fluctuations in a propagating

channel to phase fluctuations in the same wavelength channel
r limits maximum power per channel
r SPM only significant systems designed to operate at >10 Gb/s

r Cross phase modulation (XPM): converts power fluctuations in a propagating
channel to phase fluctuations in co-propagating wavelength channels

r limits the possible reduction in channel spacing
r CPM considered for WDM systems with channel spacing < 20 GHz
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3. Fiber-Optic Communications
Repeater stations

Metallic cable

• Terrestrial radio
links

•Microwave relay

•Satellite links

• Twisted
copper pairs

•Coaxial cables

Radio relay stations

Orbiting satellite

• Early optical
fiber links

Transmission loss⇓             Capacity⇑               Size&weight⇓

Immunity to electromagnetic interference⇑        Security level⇑

Electrical repeater Electrical to
Optical converter

O → E E → O

Optical to
electrical
converter
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O → E E → O

O → E E → O

O → E E → O

O → E E → O

Optical amplifier fiber cable

WDM fiber link with no optical amplification  

WDM fiber link with optical amplification  

O → E E → O

SDM multi-wavelength link with no optical amplification  

O → E E → O

O → E E → O

O → E E → O

λ1 = red; λ2 = green; λ3 = blue; λ4 = yellow;

3.1 Fiber Links
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3.2 Transport Networks (MANs,WANs)
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IP router

ATM switch

SDH digital
cross-connect

Voice switch

PSTN

IP/ATM
network

Edge network

Optical cross-
connect node Optical path

Core network
WDM

SDH ATM IP

Open Optical InterfaceSDH

ATM

IP

SDH

ATM

IP

Other

Existing network                               Future network

Everything over WDM 

3.2 Transport Networks (MANs,WANs)
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3.2 Transport Networks (MANs,WANs)
r Fibers are now deployed over various forms of the existing infrastructure

r Now non-IT companies such as Power or Railway Companies own fiber plants
r Leasing ( or swapping) of dark fiber is a big business, extends coverage of new operators

Aerial Power
Cables

Railways &
Metro Lines

Waterways
(River Bottom)

Motorways
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3.2 Transport Networks
r Submarine cables  now carry much more inter-continental traffic than satellite

systems
r Trans-Atlantic Telephone 8 (TAT-8) is 1st fiber cable system, began operating 1988
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r Hub links with optical network units (ONUs) via optical access nodes (OANs)
r For passive optical networks (PONs) ⇒ OANs are just passive splitters or combiners
r Expensive to lay fibers to the home (about US$ per home passed)
r Use cheap alternatives like plastic optical fibers and techniques suc as air-blown fibers

3.3 Optical Access Networks

Interactive video

Digital Audio

Telephony

Remote Games

Internet

Frame Relay

SNI

Service Nodes

ONU

ONU

ONU

ONU = optical
networking units

FTTH

OANOAN

OAN

OAN

OAN

OAN

OAN

OAN OAN

ONU

FTTB

OAN
ONU

Central
Office

Coaxial
cables

Twisted
pairs

Fiber
Feeders

ONU

FTTK/Cab

FTTAOAN = optical
access nodes



EMU/S-72.130/FiberCables/Feb0144/51
     

r Future local area networks (company or campus networks) boosted by
Gigabit Ethernet

r Offers 1 Gbit/s both ways
r Uses the 802.3 Ethernet Frame Format
r Uses CSMA/CD access method
r Backward compatible with 10Base-T and 100Base-T technologies

r   Following cables could be used for Gigabit Ethernet
r Cat 5 unshielded twisted pairs (UTP) for about 100 m
r Multimode fibers (50 µm) for links up to 550 m at 1300 nm
r Singlemode fibers for 3 km at 1300 nm

3.3 Optical Access Networks
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3.4 Infrared Links
r So far main focus has been on development of indoor systems (coverage

limited to a few meters)
r Inter-connection of printers, laptops, PDAs (point-and-shoot)
r Camera-monitor connectivity of CCTV applications,
r Infrared wireless LAN applications (e.g. 10 Mb/s systems like VIPSLAN & iRLan)

Node Hub

Ceiling Access
Point
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3.4 Infrared Links
r Point-to-point outdoor systems for LAN interconnection

r Example includes Jolt UWIN 4400 (155 Mbit/s)
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3.5 Specialty Fibers
r Fiber that perform additional function(s) apart from just acting as ”light

pipes”
r Fiber devices made from fibers

r The erbium doped fiber amplifier (EDFA) is the most popular example
r Amplifies WDM signals (G about 20 dB) in the 1530-1560 nm window
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3.5 Specialty Fibers
r Altering the host (amplifying pece of fiber) or dopant materials results in

opening of more transmission window
r L-band (1560-1620 nm) amplifiers to be commercially available very

soon.
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3.5 Specialty Fibers
r Fiber Bragg gratings (FBGs) another

exciting development, used for
r Optical filtering
r Dispersion compensation
r Flattening of EDFA gain spectrum

r FBG can also be tuned by varying the
pattern (grating) period

r Wavelength routing devices
r Remote sensing
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4. Conslusions
r Fibers were covered from the basic aspects

r Design, fabrication and cable packaging

r The possible impairments on a signal carried by a fiber waveguide
r Attenuated and dispersed
r Fiber nonlinearities, especially if WDM transmission is used

r Use of fibers in optical communications systems
r Usable at all levels of the network: residential, business, metropolitan, national
r Several km of fibers laid every minute!
r Major role to play in all forms of communications
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