S-72.227 Digital Communication Systems (Spring 2005)

4.4.2005

Naser Tarhuni <ntarhuni@cc.hut.fi>

Fiber Optic Communications

1.

The power budget for a system is given by the following expression $P_i = P_o + C_L + M_a$ dB

where P_i is the mean input optical power launched into the fiber, P_o is the mean incident optical power required at the receiver, M_a is the safety margin, and C_L is the total channel loss. The total channel loss is given by,

$$C_L = \left(\alpha_{fc} + \alpha_j\right)L + \alpha_{cr} \, \mathrm{dB}$$

where *L* is the length in kilometers of the cable, α_{jc} is the fiber cable loss in decibels per kilometer, α_j is the loss due to joints (splices) in decibels per kilometers, and α_{cr} is the connector loss at the optical source and detector.

The following parameters are established for a long-haul single-mode optical fiber system operating at a wavelength of 1.3 um.

Mean power launched from the laser transmitter	-3 dBm
Cabled fiber loss	0.4 dB Km^{-1}
Splice loss	0.1 dB Km^{-1}
Connector loss at the transmitter and receiver	1 dB each
Mean power required at the APD receiver:	
When operating at 35 Mbit/s	-55 dBm
When operating at 400 Mbit/s	-44 dBm
Required safety margin	7 dB

Estimate:

- (a) the maximum possible link length without repeaters when operating at 34 Mbit/s.
- (b) the maximum possible link length without repeaters when operating at 400 Mbit/s.

2.

A silica fibre with has a core refractive index of 1.50 and a cladding refractive index of 1.47. Determine:

- a) the critical angle at the core-cladding interface the NA for the fiber
- b) the acceptance angle in air for the fiber.

Fading multipath radio channels

3.

The scattering function $S(\tau; v)$ for a fading multipath channel is nonzero for the range of values $0 \le \tau \le 1$ ms and $-0.1 \text{ Hz} \le v \le 0.1 \text{ Hz}$. Assume that the scattering function is approximately uniform in the two variables.

- a. Give numerical values for the following parameters.
 - 1. The multipath spread of the channel
 - 2. The Doppler spread of the channel
 - 3. The coherence time of the channel
 - 4. The coherence bandwidth of the channel
- b. Explain the meaning of the following taking into consideration the answers given in (a)
 - 1. The channel is frequency non-selective
 - 2. The channel is slowly fading
 - 3. The channel is frequency selective

4.

A Rayleigh fading radio channel has a delay spread of $T_m = 1$ ms and a Doppler spread

 $B_d = 10$ Hz. The signaling bandwidth is 25 KHz.

- a. Estimate the coherence bandwidth and the coherence time of the channel
- b. Is the channel frequency selective?
- c. Are we dealing with slowly fading channel?

5.

A local spatial average of a power delay profile is shown below.

- a. Determine the rms delay spread and mean excess delay for the channel
- b. Determine the maximum excess delay (-20 dB).
- c. Determine the maximum RF symbol rate if the symbol duration T is less than 10σ where σ is RMS delay spread, and ISI takes place.
- d. If the mobile travelling at 30 Km/hr receives a signal through the channel, determine the time over which the channel appears stationary.

