S-72.232 RADIO COMMUNICATION SYSTEMS EXERCISE 2/2005, 11.2.2005

- 7. A radio channel can be modelled as a two-path channel with a fixed delay τ , $h(\lambda, t) = h_1(t)\delta(\lambda) + h_2(t)\delta(\lambda \tau)$. The time varying complex gains of each path are independent, stationary, zero-mean normal processes.
- a) Derive the autocorrelation function $R_h(\lambda, \Delta t)$ of the impulse response of this channel in terms of the autocorrelation functions of the path gains.
- b) Derive the expression of standard deviation of the delay spread of the channel.
- c) Calculate the numerical value of the delay spread std. as a function of the path gain ratio in dB when $\tau = 1 \mu s$.
- 8. The scattering function of a fading multipath channel is

$$S(\lambda, \nu) = c \cdot \operatorname{tria}\left(\frac{\lambda - \lambda_o}{\lambda_o}\right) \cdot \operatorname{tria}\left(\frac{\nu}{B}\right),$$

where $\lambda_0 = 10 \ \mu s$ ja B=100 Hz. Estimate

- a) the multipath spread,
- b) the Doppler spread,
- c) the coherence time,
- d) the coherence bandwidth,
- e) the spread factor

of this channel.

9. A multipath channel comprises 6 independently Rayleigh-fading components having delays and average power levels relative to the strongest component according to the table below.

i	1	2	3	4	5	6
τ _i /μs	0	0.3	1.0	1.6	5.0	6.6
P _{im} /dB	-2.5	0	-3.0	-5.0	-2.0	-4.0

a) Present the equivalent low-pass transfer function of the quasi-static channel in symbolic form.

- b) What is the transfer function value (again in symbolic form) on the carrier frequency?
- c) How many dB larger is the signal to noise ratio of a narrow-band output signal compared to the signal to noise ratio of the strongest component? Hint! The narrow-band signal is still Rayleigh-fading.
- d) What is the probability that the instantaneous output signal to noise ratio goes below the average signal to noise ratio of the strongest component?
- 10. The received radio signal amplitude is Rayleigh-distributed. The amplitude of an interference signal is also Rayleigh-distributed and independent of the first signal.
 - a) Derive an expression of the probability that the signal to interference ratio (SIR) is below the value k, when the average SIR is c.
 - b) Calculate the probability that SIR is below i) 20 dB, ii) 10 dB, iii) 0 dB, when the average SIR is 20 dB.
 - c) How large should the average SIR in dB be, if the instantaneous SIR would be below 20 dB no more than i) 10% of the time, ii) 1% of the time iii) 0,1% of the time.

HOMEWORK 2, return time 1 month, at latest before the May 2005 exam

The GSM Hilly Terrain multipath channel model comprises 6 independently Rayleigh-fading components having delays and average power levels relative to the strongest component according to the table below.

i	1	2	3	4	5	6
τ _i /μs	0	0.1	0.3	0.5	15.0	17.2
P _{im} /dB	0	-1.5	-4.5	-7.5	-8.0	-17.7

- a) Derive the autocorrelation function $R_h(\lambda, \Delta t)$ of the impulse response of this channel in terms of the mean power of each path gain.
- b) Derive the expressions and the numerical values of the mean delay, r.m.s. delay, and delay standard deviation (a measure of half delay spread) of the of this channel.