S-72.245 Transmission Methods in Telecommunication Systems (4 cr)

Transmission Channels

Agenda today

- Characterizing channels
 - linearity
 - non-linearity
 - time-variability
- Measuring channels
- Overview to some channels
 - wired channels
 - coaxial cables
 - twisted cables
 - wireless cellular channel
 - large-scale path loss
 - small scale modeling, e.g
 - delay spread
 - coherence bandwidth
 - Doppler spread

Analog and digital transmission in various channels [8]

Communication channels and medium

- A **physical medium** is an inherent part of a communications system
 - Wires (copper, optical fibers), wireless radio spectra
- Communications systems include electronic or optical devices that are part of the transmission path followed by a signal
 - Equalizers, amplifiers, signal conditioners (regenerators)
 - Medium determines only part of channels behavior. The other part is determined how transmitter and receiver are connected to the medium
 - Therefore, by telecommunication channel we refer to the combined end-to-end physical medium and attached devices
- Often term "filter" refers to a channel, especially in the context of a specific mathematical model for the channel. This is due to the fact that all telecommunication channels can be modeled as filters. Their parameters can be
 - deterministic
 - random
 - time variable
 - linear/non-linear

Guided and unguided medium

- Medium convoys message by electromagnetic waves
 - wireless/wired (medium)
 - baseband/carrier wave (transmission band)
 - digital/analog (message format)
- In free space information propagates at $v=c/\sqrt{\epsilon}$, $\lambda = v/f_0$
- <u>Wireless</u>: easy deployment, radio spectra sets capacity limit.
 Attenuation as function of distance *d* follows *d^{n(f)}n(f)*=2..5 (cellular ch.)

 $A_{wireless} = n(f)\log_{10} d[dB]$ (omni-directional radiation)

Wired: more capacity by setting extra wires (may be complicated, costly, time consuming). Attenuation as function of frequency follows 10^{k(f)d}, where k(f) is the attenuation parameter, yelding

 $A_{wired} = k(f)d[dB]$

 Therefore, in general, wireless systems may maintain signal energy longer that wired systems. However, actual received power depends greatly on transmission parameters

Selecting the medium/media

- What is **amount of traffic** to be distributed?
- What is the **cost** we can afford?
- What is the **interference** environment?
- Is mechanical robustness adequate?
- Point-to-point or **networking** usage?
- Capability to transfer **power** (for instance for repeaters)?
- Often the first selection is done between
 - Wired
 - Wireless
- Often one can consider if **digital** or **analog** message is to be transmitted
 - analog PSTN takes 300-3400 kHz
 - digital PCM takes 64 kbit/s
 - digital, encoded GSM speech only 13 kbit/s
 - what is the adequate compression level?

Channels parameters

- Characterized by
 - attenuation[dB/km], transfer function
 - impedance $[\Omega]$, matching
 - bandwidth[Hz], data rate
- Transmission impairments change channel's effective properties
 - system internal/external interference
 - cross-talk leakage power[dB] from other users
 - channel may introduce inter-symbolic interference (ISI)
 - channel may absorb interference from other sources
 - wideband noise [W/Hz]
 - distortion, linear (uncompensated transfer function)/nonlinear (non-linearity in circuit elements)
- Channel parameters are a function of frequency, transmission length, temperature ...

Data rate limits

- Data rate depends on: <u>channel bandwidth</u>, the number of levels in <u>transmitted signal and channel SNR (received signal power)</u>
- For an *L* level signal with theoretical sinc-pulse signaling transmitted maximum bit rate is (Nyqvist bit rate) $r_b = 2B_T \log_2(L)$
- There is absolute maximum of information capacity that can be transmitted in a channel. This is called as (Shannon's) channel capacity

 $C = B \log_2(1 + SNR)$

• Example: A transmission channel has the bandwidth $B_{\tau} = 1 \text{ MHz}$ and SNR = 63. Find the approproate bit rate and number of signal levels. Solution: Theoretical maximum bit rate is

 $C = B\log_2(1 + SNR) = 10^6 \log_2(64) = 6 \text{ Mbps}$

In practise, a smaller bit rate can be achieved. Assume

 $r_b \approx 4 \text{Mbps}=2B_T \log(L) \Longrightarrow \underline{L}=4$

Measuring channels

- Parameters of greater interest are transfer function and impedance.
 Transfer function can be measured by
 - launching white noise (in the frequency range to be measured) to the channel (frequency response)
 - Launching impulse to the channel (theoretical). In practice, short, limited amplitude pulse will do (impulse response)
 - Launching **sweeping tone(s)** to the channel (frequency response)
- Impedance can be measured by measuring voltage across the load in the input/output port: $Z_n = R_n + X_{n+1} V_{n+1}$

 Transfer characteristics of nonlinear channels can be deducted from generated extra frequency components (we will discuss this soon with non-linearity)

Impedance matching

- Often (as with coaxial cables) channel interfaces must be impedance matched to maximize power transfer and to avoid power reflections
- In applying power to a transmission channel (or a circuit) source and loading impedances must be complex conjugates in order to maximize power dissipated in the load
- **Perfect match** means efficiency of 50%
- Setting impedances Z_g and Z_L to fulfill this condition is called **impedance matching**

Linear channels [1]

 Linear channels have the output that is input signal multiplied by a constant and delayed by a finite delay:

$$y(t) = Kx(t-t_d)$$

Y(f)=F [y(t)]= $\underbrace{Kexp(-j\omega t_d)}_{H(f)} X(f)$

due to the fact that system output is also Y(f) = H(f)X(f)

- Therefore, for linear systems |H(f)| = |K|, arg $H(f) = -2\pi f t_d$
- Linear distortion can be
 - amplitude distortion: $|H(f)| \neq |K|$
 - <u>delay distortion</u>: $\arg H(f) \neq -2\pi t_d f$
- Solving above gives phase delay, defined by

 $t_d(f) = -\arg H(f)/(2\pi f)$

In distortionless channel all Fourier-components retain their relative phase positions while propagating in channel

Nonlinear channels[1]

- System non-linearity means that its transfer characteristic is nonlinear
- For non-linear channels output is $y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t) + Assume sinusoidal input <math>x(t) = \cos \omega_0 t$, then

$$y(t) = \left(\frac{a_2}{2} + \frac{3a_4}{8}...\right) + \left(a_1 + \frac{3a_3}{4}...\right) \cos \omega_0 t + \left(\frac{a_2}{2} + \frac{a_4}{4}...\right) \cos 2\omega_0 t + ...$$

$$y(t) = D_0 + D_1 \cos(\omega_0 t) + D_2 \cos(2\omega_0 t)...$$

where D_n :s are the <u>distortion coefficients</u>

- <u>*n*:rth-order distortion</u> [%] is determined with respect of the fundamental frequency: $D_n[\%] = (D_n / D_1) x 100\%$ output
- Assume that the input is $y(t) = \cos \omega_c t + A \cos(\omega_c + \omega_d) t$ <u>3rd order intercept</u> [1,p.55] occurs* where

 $A = 4a_1/(3a_3)$

 This is easy to measure and is used to characterize nonlinear systems

*See the prove in supplementary material (A. Burr: Modulation and Coding)

Wireline channels: Twisted pair

Comes in two flavors: Shielded (STP) / Unshielded (UTP)

- Twisting reduces interference, and crosstalk (antenna-behavior)
- Applications
 - Connects data and especially PSTN local loop analog links (Intrabuilding telephone from wiring closet to desktop)

 - STP used especially in high-speed transmission as in token ringnetworks

Twisted pair - UTP categories in LANs

- Category 1: mainly used to carry voice (telephone wiring prior to 1980). Not certified to carry data of any type.
- Category 2: used to carry data at rates up to 4Mbps. Popular for older Token-passing ring LANs using 4Mbps specs (IEEE 802.5). Rated bandwidth 1 MHz.
- Category 3: known as voice grade. Used primarily in older Ethernet 10base-T LANs (IEEE 802.3). Certified to carry 10Mbps data. 16Mhz. 3-4 twists/feet.
- Category 4: primarily used for token-based or 10Base-T.
 20MHz.
- Category 5: most popular Ethernet cabling category. Capable of carrying data at rates up to 100 Mbps (Fast Ethernet, IEEE 802.3u) and used for 100 base-T and 10base-T networks. Rated to 100 MHz. 3-4 twists/inch.

Unshielded and shielded twisted pairs attenuation compared

 Electronic Industries Association has specified in EIA-568-A twisted pairs for different applications.

Frequency (MHz)	Attenuation (dB per 100 m)			Near-end crosstalk (dB)			
	Category 3 UTP	Category 5 UTP	150 Ω STP	Category 3 UTP	Category 5 UTP	150 Ω STP	
1	2.6	2.0	1.1	41	62	58	
4	5.6	4.1	2.2	32	53	58	
16	13.1	8.2	4.4	23	44	50.4	
25		10.4	6.2		32	47.5	
100		22.0	12.3			38.5	
300			21.4			31.3	
300			21.4				

Twisted pair application examples [6]

- Comes in different wire thickness, e.g. 0.016 inch (24 gauge)
- The longer the cable, the smaller the bandwidth

S	tandard	Data Rate	Distance		
	DS-1	1.544 Mbps	18,000 feet, 5.5 km		
	DS-2	6.312 Mbps	12,000 feet, 3.7 km		
1/	'4 STS-1	12.960 Mbps	4500 feet, 1.4 km		
1/	2 STS-1	25.920 Mbps	3000 feet, 0.9 km		
S	STS-1 51.840 Mbps		1000 feet, 300 m		

Data rates & distances for 24-gauge

twisted pair

Twisted cable attenuations

DS-1,DS2: Digital Signal 1,2

Synchronous Digital Hierarchy (SDH) levels

STS-1: Synchronous Transport Signal level-1, Synchronous Optical Network's (SONET) physical level signal

Cable & Connectors on nectors									
RS Home	About RS Pre	oducts Sea	arch Ord	ers Info	Zone Registe	r Help Log-In			
Quick Search for:									
Go	Category 3 UTP Network Cable								
Advanced search	Back to: All Products Cable & Connectors Cables Local Area Network (LAN) Cables Upshielded								
Cable & Connectors	Twisted F	Pair Cables	<u>onnoocors</u> (<u>o</u>	<u>abios</u> <u>coodi i</u>					
Cable Accessories									
Connectors - Crimp Terminals					2				
Connectors - Electrical / Power				/	0.441.75				
Connectors - Multipole Circular Connectors - Multipole PCB			1000		Click on the picture				
Connectors - Multipole					or this icon to see a				
Rectangular Connectors - RE (Coavial		and the second second			of this product				
Connectors - Terminal Blocks /			-						
DIN Rail Terminals									
Connectors - Test Leads &									
Networking / Communications									
All Products	C - Li Liu								
Automation	Sola in	reels of 100m							
Books		reel	reel		· ·				
Cable & Connectors Consumables	туре	length	wt	STOCK NO.	price per	reel			
Electrical		400	(Kg)	_	7-0	7-74			
Electronic	Urder 4 pair	100m	3.0	₹	<u>(U3-6001</u> €53.50	€51.5U			
Health & Safety Information Technology	The unchielded twic	tod poir cotogor	w 2 data cabl	o for uco in da	to notworke and etr	uctured wiring evetome			
Mechanical	The unshielded twist	teu pair categor 52mm (24 a.w.o	y 5 uata cabi () solid conne	e iui use iii ua ar conductore	ine ulsted with PVC	uctureu winny systems. twictod into naire and			
Office Equipment	covered with an over	rall PVC sheath	The cable m	eet the requir	ements of IEEE802	31 10 hase T			
Test & Measurement				4 noir					
Tools				4 pair					
Featured Ranges			Overall di	a. mm 4·9					
New Products			Equivaler	nts:					
			BICC	H9614	4				
technical specification									
		te	chnical spec	cification					
		te Im	chnical spec	eification	(10MHz)				
	lektroniikka fi	te Im Att	chnical spec pedance tenuation (per	- 95Ω (100m) 9:0dE	(10MHz) 3 (10MHz)				

Slow (S) and fast fading (a) in cellular channel

Fluctuation of received power in cellular channel [4]

- Received power fluctuations can be modeled to consist of:
 - Shadow fading, slow rate, local averaged signal power component has a Gaussian distribution (in dB) (Caused by larger obstacles between TX and RX)

$$p(S) = \frac{1}{\sigma_{\rm s}\sqrt{2\pi}} \exp\left(-\frac{(S-S_0)^2}{2\sigma_{\rm s}^2}\right)$$

 $S_0 = C / r^{\alpha}, \alpha = 2...5$ (global, average power)

- **Rayleigh/Rice fading**, *high rate component* due to various sources of multipath. Rayleigh distribution (non-line of sight path) is defined as $p(a) = \frac{a}{\sigma^2} \exp(-a^2/2a^2)$
- high rate Doppler shifts

- The time variable channel impulse response is $h_{b}(t,\tau) = \sum_{i=0}^{N-1} a_{i}(t,\tau) \exp(j2\pi f_{c}\tau_{i}(t) + \phi(t,\tau))\delta(\tau - \tau_{i}(t))$
- For time invariant channels each impulse response is the same or has the same statistics and then

$$h(\tau) = \sum_{i=0}^{N-1} a_i \exp(-j\theta_i) \delta(\tau - \tau_i)$$

Doppler bandwidth

- Multipath created small-scale fading effects
 - rapid changes in signal strength due to movement and/or time
 - random frequency modulation due to Doppler shifts on different multipath propagation paths
 - time dispersion due to multipath propagation delay
- The difference in path lengths to X & Y from source S is $\Delta I = d \cos \theta = v \Delta t \cos \theta$
- The phase change between locations X & Y is then $2\pi 2\pi t \Delta t$

$$\Delta \phi = \frac{2\pi}{\lambda} \Delta I = \frac{2\pi v \Delta t}{\lambda} \cos \theta$$
$$f_{d} = \frac{1}{2\pi} \frac{\Delta \phi}{\Delta t} = \frac{v}{\lambda} \cos \theta$$

Doppler effect [7]

*Angular frequency is the derivative of angular phase see also slides of frequency modulator later

Optical Fiber

- Light sources (lasers, LEDs) generate pulses of light that are transmitted on optical fiber
 - Very long distances (>1000 km)
 - Very high speeds (>40 Gbps/wavelength)
 - Nearly error-free (BER of 10⁻¹⁵)
- Profound influence on network architecture
 - Dominates long distance transmission
 - Distance less of a cost factor in communications
 - Plentiful bandwidth for new services

Transmission in Optical Fiber

Total Internal Reflection in optical fiber

- Very fine glass cylindrical core surrounded by concentric layer of glass (cladding)
- Core has higher index of refraction than cladding
- Light rays incident at less than critical angle θ_c is completely reflected back into the core

Multimode & Single-mode Fiber

Multimode fiber: multiple rays follow different paths

- Multimode: Thicker core, shorter reach
 - Rays on different paths interfere causing dispersion & limiting bit rate
- Single mode: Very thin core supports only one mode (path)
 - More expensive lasers, but achieves very high speeds

Optical Fiber Properties

Advantages

- Very low attenuation
- Noise immunity
- Extremely high bandwidth
- Security: Very difficult to tap without breaking
- No corrosion
- More compact & lighter than copper wire

Disadvantages

- New types of optical signal impairments & dispersion
 - Polarization dependence
 - Wavelength dependence
- Limited bend radius
 - If physical arc of cable too high, light lost or won't reflect
 - Will break
- Difficult to splice
- Mechanical vibration becomes signal noise

Very Low Attenuation

Huge Available Bandwidth

• Optical range from λ_1 to $\lambda_1 + \Delta \lambda$ contains bandwidth

$$B = f_1 - f_2 = \frac{v}{\lambda_1} - \frac{v}{\lambda_1 + \Delta \lambda}$$
$$= \frac{v}{\lambda_1} \left\{ \frac{\Delta \lambda / \lambda_1}{1 + \Delta \lambda / \lambda_1} \right\} \approx \frac{v \Delta \lambda}{\lambda_1^2}$$

• Example: $\lambda_1 = 1450$ nm $\lambda_1 + \Delta \lambda = 1650$ nm:

$$B = \frac{2(10^8) \text{m/s } 200 \text{nm}}{(1450 \text{ nm})^2} \approx 19 \text{ THz}$$

References

- 1 A. Burr: Modulation & Coding
- 2 A.B. Carlson: Communication Systems (4th ed)
- 3 S.J. Halme: Televiestintäjärjestelmät (isbn 951 672 238 5)
- 4 Ahlin, Zhanders: Principles of Wireless Communications
- 5 W. Stallings: Wireless Communications and Networks
- 6 A. Leon-Garcia, I. Widjaja: Communication Networks (extracts from instructors slide set)
- 7 T. Rappaport: Wireless Communications, Prentice Hall
- 8 Telia, Ericsson: Understanding Telecommunications, Student Litterature