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Linear carrier wave (CW) modulation

n Bandpass systems and signals
n Lowpass (LP) equivalents
n Amplitude modulation (AM)
n Double-sideband modulation (DSB)
n Modulator techniques
n Suppressed-sideband amplitude 

modulation (LSB, USB)
n Detection techniques of linear modulation

– Coherent detection
– Noncoherent detection

AM

DSB

LSB

USB
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Baseband and CW communications

n Baseband communications is used in
– PSTN local loop
– PCM communications for instance between exchanges
– (fiber-) optical communication

n Using carrier to shape and shift the frequency spectrum (eg CW 
techniques) enable modulation by which several advantages are 
obtained
– different radio bands can be used for communications
– wireless communications
– multiplexing techniques become applicable
– exchanging transmission bandwidth to received SNR

CWbaseband

carrier
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Defining bandpass 
signals

n The bandpass signal is band limited

n We assume also that (why?)

n In telecommunications bandpass signals are used to convey 
messages over medium

n In practice, transmitted messages are never 
strictly band limited due to
– their nature in frequency domain (Fourier series coefficients 

may extend over very large span of frequencies)
– non-ideal filtering   
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Example of a bandpass system
n Consider a simple bandpass system: a resonant (tank) circuit
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n The bandwidth is inversely proportional to Q-factor:

n System design is easier (next slide) if the fractional bandwidth
1/Q=B/f0 is kept relatively small:

n Some practical examples:

Bandwidth and Q-factor
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Why system design is easier for smaller 
fractional bandwidths (FB)?

n Antenna and bandpass amplifier design is difficult for large FB:s:
– one will have “difficult to realize” components or 

parameters in circuits as 
• too high Q
• too small or large values for capacitors and inductors

n These structures have a bandpass nature because one of their 
important elements is the resonant circuit. Making them 
broadband means decreasing resistive losses that can be 
difficult
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I-Q (in-phase-quadrature) description for 
bandpass signals
n In I-Q presentation bandpass signal carrier and modulation parts

are separated into different terms 
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The phasor description of bandpass signal
n Bandpass signal is conveniently represented by a phasor 

rotating at the angular carrier rate                  : 
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Lowpass (LP) signal

n Lowpass signal is defined by
yielding in time domain

Taking rectangular-polar conversion yields then
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Transforming lowpass signals 
and bandpass signals

n Physically this means that the lowpass signal is modulated to 
the carrier frequency ω when it is transformed to bandpass 
signal. Bandpass signal can be transformed into lowpass signal 
by (tutorials). What is the physical meaning of this?
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Amplitude modulation (AM)
n We discuss three linear mod. methods: (1) AM (amplitude 

modulation), (2) DSB (double sideband modulation), (3) SSB 
(single sideband modulation)

n AM signal:

n φ(t) is an arbitrary constant. Hence we note that no information 
is transmitted via the phase. Assume for instance that φ(t)=0, 
then the LP components are 

n Also, the carrier component contains no information-> Waste of 
power to transmit the unmodulated carrier, but can still be useful 
(how?) 
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AM: waveforms and bandwidth

n AM in frequency domain:

n AM bandwidth is twice the message bandwidth W:
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AM waveforms

(a): modulation
(b): modulated carrier
with µ<1
(c): modulated carrier
with µ>1

Envelope distortion!
( : ( ) [1 ( )]cos( ))c c m cx t A x t tµ ω= +AM signal
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AM power efficiency
n AM wave total power consists of the idle carrier part and the 

useful signal part:

n Assume AC=1, SX=1, then for µ=1 (the max value) the total 
power is

n Therefore at least half of the total power is wasted on carrier
n Detection of AM is simple by enveloped detector that is a reason

why AM is still used. Also, sometimes AM makes
system design easier, as in fiber optic
communications
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n In DSB the wasteful carrier is suppressed:

n The spectra is otherwise identical to AM and the transmission 
BW equals again double the message BW

n In time domain each modulation signal zero crossing produces 
phase reversals of the carrier. For DSB, the total power ST and 
the power/sideband PSB have the relationship

n Therefore AM transmitter requires twice the power of DSB 
transmitter to produce the same coverage assuming SX=1. 
However, in practice SX is usually smaller than 1/2, under which 
condition at least four times the DSB power is required for the 
AM transmitter for the same coverage

DSB signals and spectra
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DSB and AM spectra
n AM in frequency domain with

n In summary, difference of AM and DSB at frequency domain is 
the missing carrier component. Other differences relate to power
efficiency and detection techniques. 
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(a) DSB spectra, (b) AM spectra
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AM phasor analysis,tone modulation 

n AM and DSB can be inspected also by trigonometric expansion 
yielding for instance for AM

n This has a nice phasor interpretation; 
take for instance µ=2/3, Am=1:
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Linear modulators 

n Note that AM and DSB systems generate new frequency
components that were not present at the carrier or at the 
message.

n Hence modulator must be a nonlinear system
n Both AM and DSB can be generated by 

– analog or digital multipliers
– special nonlinear circuits 

• based on semiconductor junctions (as diodes, FETs etc.)
• based on analog or digital nonlinear amplifiers as

– log-antilog amplifiers:
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n (a) Product modulator
(b) respective schematic 

diagram 
=multiplier+adder

( : ( ) [1 ( )]cos( ))c c m cx t A x t tµ ω= +AM signal
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Square-law modulator (for AM)
n Square-law modulators are based on nonlinear elements:

(a) functional block diagram, (b) circuit realization
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Balanced modulator (for DSB)
n By using balanced configuration non-idealities on square-law 

characteristics can be compensated resulting a high degree of 
carrier suppression:

n Note that if the modulating signal has a DC-component, it is not 
cancelled out and will appear at the carrier frequency of the 
modulator output
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Synchronous detection
n All linear modulations can be detected by synchronous 

detector
n Regenerated, in-phase carrier replica required for signal 

regeneration that is used to multiple the received signal
n Consider an universal*, linearly modulated signal:

n The multiplied signal y(t) is:
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*What are the parameters
for example for AM or DSB?
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The envelope detector
n Important motivation for using AM is the possibility to use the 

envelope detector that 
– has a simple structure (also cheap) 
– needs no synchronization 

(e.g. no auxiliary, unmodulated 
carrier input in receiver)

– no threshold effect (
SNR can be very small and 
receiver still works)
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Envelope detector analyzed

n Assume diode half-wave rectifier used to rectify AM-signal. 
Therefore after the diode AM modulation is in effect multiplied 
with the half-wave rectified sinusoidal signal w(t)

n The diode detector is then followed by a lowpass circuit to 
remove the higher order terms

n The resulting DC-term may also be blocked by a capacitor
n Note the close resembles of this principle to the synchronous-

detector (why?)
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