S-72.245 Transmission Methods in
Telecommunication Systems (4 cr)

Review

Additive interference in unmodulated carrier
m Consider a general tone interference signal
W)= A. cos(w )+ A4 cos[(w, +m,)t+ ¢
~

carrier interference

{ p=4A/4

O(t)=wt+d, A

IAZsian(t)

A 1+ pcos@ (D]

m interference produces both AM and FM:

A, (y=AJ1+p* +2pcosd (1)
psinf (1)

{)=arctan
%.1) 1+ pcosB(¢)
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Additive interference and demodulators

m Further simplification under weak interference: 4 << 4 ,p<<1

Av(t)=AU\/1+ P +2pcosB(t)~ A [1+ peosb (1)]

~p?cos?8, (1)

¢,(f) = arctan _psing (@) ~ arctan [ psin@ ()] = psind (¢)
1+ pcosé (1)
m Demodulation functions: KD,AMAV(I), AM
Yo (t) & KD,PM¢(I)7 PM
K, de(t)/ di, FM
KD,AMAC [1 + pCOSQZ(I)],AM

m And therefore

. ROL K, ., psind (6).PM
d 6. ()|/ dt
Losing, (0] K o120, €086,(1).FM
=d[psin(wt+g))/dt,

= pw, cos{@t+¢,)
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Implications for demodulator design

Ko e [1+ peos, ()], AM
Vo) = K mepsing (1), PM FEYRY,
A (&
Ky mepfcosf (1), FM 0()=mt+ g

® In AM and PM a tone interference produces a tone to reception
whose amplitude is comparable to pand
position comparable to 8.(r) =w,+ 4,

m Interference in FM is more severe the more remote the
interfering tone is from the carrier (but still at the reception band

W):

é l Q: What are the implications
E. of this to noise sensitivity
& of FM bandwidth determination
3 FM
5
£
L AM and PM
W Frequency=
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FM preemphases and deemphases filters

m FM related noise emphases can be suppressed by pre-distortion

and post detection filters (preemphases and deemphases

filters): Ba.
F- TS
Uin Ca  |Youm
O——e—0 Hdg(f)
c 0 Bi“‘ r f
gk / H.F)
R R out
<< B
Q: What would happen H_(f)=[1+ j(f/ Bdg)
if the filters would be
reversed? (TX filter in << B
recefver & vice versa) H 1+ /B d
L) =[1+J(f 1 B)]~ S IBLf 5> B,
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PLL based frequency synthesizer

U

Reference signal f;,

is locked for |nstance

to the fundamental frequency
of a crystal oscillator

By adjusting the

divider different £ =10f
frequencies can be produced . "
whose phase is locked into £},
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Detecting DSB using PLL-principle

= L Gt DS e PD: phase detector (=multiply+LPF)
;5 x(1) sin e,
b ————————»{ Main PD
o
ko
=] cos (w2 — €, + 90°) \‘i vCO f‘ ‘ Multiplier
=T
j x(r)cos w.! P
=% e —9Q° LPF vields constant (zero)
75} output when loop is locked
== Loop drives phase tolcarrier
g = error to zero 4
o< x(r)cos e Qutput
#{ Quad PD
sing, cosg, = % sin2g_ +sin0= ¢,
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An important application for PLLs is in synchronization of receiver
local oscillator in synchronous detection
In the Costas PLL (below) two phase discriminators are used to:
— cancel out DSB modulation x(t} in the driving signal
— synchronize the output frequency to the center frequency of the
DSB spectra (the suppressed carrier)

PAM Power Spectral Density (PSD)

m PSD for PAM can be determined by using a general expression

19

Amplitude autocorrelation
1 ) @ ,
G(N=5PN Z &@(—anb)

For uncorrelated message bits
o’ +m’,n=0 Total power
R(m)=4 ° ‘
i mj’ nz0 DC power
and therefore
i R (n)exp(-2zanfD)=c +m’ i exp(—j2xnfD)

. _ l -
onthe otherhand X exp(—j2anfD) = i > 5(f—gj andr=1/D

G.(N)=oirlP(f) +mr T |P(nr)| 5(f = nr)
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PAM Power Spectral Density (PSD)

= PSD for PAM can be determined by using a general expression
Amplitude autocorrelation

1
G =
() O
=  For uncorrelated message bits

o’+m’,n=0 Total power
R, (n)=

mj,n =0 DC power
and therefore

iw R (n)exp(—2znfD)=0’ +m’ 21 exp(—j2znfD)

. . 1
on the other hand ;wexp(—JZﬁnfD) =— (f _Dj andr=1/D

D
G.(f)=oir|P(f) +mr’ T|P(ar) 6(f —nr)
A m———
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Example

m For unipolar blnary RZ signal: t ©

P(p-gosined o [T |T H ﬂ”‘;““ ,

T, T,
= Assume source bits are equally alike and independent, thus

o= (/20| A=A 14,m =

= G.(f)= sine' L+ 2

sing’ —4+—3> o wr, sinc’ —
lor, 2r 16 Zw (f =nr;) 2

(i‘(f) \ . 2
A A’ A’ A_r L
. B — » < AP A R b
} ’1'_ 16 47 367" 4 27;

167,

G(N=c'rP()

\ +mr i \P(m‘)\2 o(f —nr)

0 (7 2r, 3r 4r
b »
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Equalization: Removing Residual IS1

m Consider a tapped delay line equalizer with

Total delay 2ND
A —

-

pn ol j O D ]
| B.(8) = ¢, p(t-2ND)

Pt =c,p(1)
(D)= c, plt- ND)

m Search for the tap gains ¢, such that the output equals zero at
sample intervals D except at the decision instant when it should
be unity. The output is (think for instance paths c_,, ¢, or ¢y

p.(1)= X ¢ B(t—nD - ND)

that is sampled at ¢ = kD + ND yielding
p,(KD+ND)= ¥ ¢, p(kD —nD)= ¥ ¢, p[D(k —n)]

y, Timo O, Korhonen
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Tapped Delay Line: 2%, oo b,

Matrix Representation | cleclle |

p.(H)

m At the instant of decision:
Lk=0

t)=3 cp[DUk-n)]=Ycp =
p(t)=2 . p[Dk-m)]=2cp {O’k=i17i2’__’iN

m That leads into (2N+171)x(2N+1) matrix where (2N+1) tap
coefficients can be solved:

2 | 0
e tPc retbae,=0 | T BT
Be +pc 4.+ p =0
plc—n pﬂc—ml p'zmlcﬁ i)N71 0 1671\1—1 4 1 0
e - - ﬁN . p*N CU =1
p.e., +pn—lc—n+l t+.. +p—wcn =1 pJ\Hl p-z\m c 0
Aﬁznc—n—i_ﬁzmc—ml+"'+ﬁuc":0 _pzN ﬁu __CN_ _0—
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Example of Equalization

m Read the distorted pulse values into
matrix from fig. (a)

1.0 0.1 00 0
-02 10 O0lf|c |=|1
01 -02 1.0]|¢ 0

and the solution is

c, -0.096 Pea ()
¢ |=| 096
c, 02
Question: what does these <5l Yog = 4
zeros help because they don't /m"
exist at the sampling instant? Zero forced values
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Monitoring Transmission Quality
by Eye Diagram

ANWAR WA ,
wﬂ\/ \J \,J |

Required minimum bandwidth is

B zr/2

Nyqvist’s sampling theorem: Noise p Timing
= . margin AP & ‘ sensitivity
Given an ideal LPF with the
bandwidth B it is possible to
transmit independent
symbols at the rate:

B.2r/2=1/2T)

IS1

Zero-crossing|
jitter

L Optimum sampling time
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