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Topics Today

! Codes
– repetition
– parity check
– block codes

! Code vectors
– Hamming distance
– error correct and detection capability

! Soft and hard decoding
! Syndrome decoding
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Cryptography
(Ciphering)

Source
Coding

Compression
Coding

Line CodingError Control 
Coding

Error 
Correction
Coding

Error 
Detection
Coding

- Secrecy/ Security
- Encryption (DES)

- Redundancy removal:
- Destructive (jpeg, mpeg)
- Non-destructive (zip)

- Makes bits
equal 
probable

- Strives to
utilize
channel
capacity by
adding 
extra bits

- for baseband 
communications

- RX synchronization
- Spectral shaping

for BW requirements
- error detection

- used
in ARQ
as in TCP/IP

- feedback channel
- retransmissions
- quality paid by delay

= FEC
- no feedback

channel
- quality paid
by redundant
bits
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FEC: Forward Error Correction
ARQ: Automatic Repeat Request
DES: Data Encryption Standard
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code radixcode radix

block codesblock codes

convolutional codesconvolutional codes

systematic codessystematic codes

non-systematic codesnon-systematic codes

binary {0,1}
ternary {-1,0,1}
octal {0,1,...7}...

binary {0,1}
ternary {-1,0,1}
octal {0,1,...7}...

code word and
check bits appear 
separately in 
encoded word

code word and
check bits appear 
separately in 
encoded word

encoded bit blocks are 
function of adjacent bit 
blocks

encoded bit blocks are 
function of adjacent bit 
blocks

linear codeslinear codes

non-linear codesnon-linear codes
- sum of any two non-zero codes yields  
another code word

- contains all-zero code word
- additive inverse: there must be a code 
that, when summed to another code 
word, yields all-zero code word

- sum of any two non-zero codes yields  
another code word

- contains all-zero code word
- additive inverse: there must be a code 
that, when summed to another code 
word, yields all-zero code word

encoded bit blocks are 
formed from each data 
word separately

encoded bit blocks are 
formed from each data 
word separately
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Repetition Coding

! In repetition coding bits are simply repeated several times
! Can be used for error correction or detection
! Assume binomial error distribution for n bits:

! Example: In 3-bit repetition coding encoded word is formed by a 
simple rule:

! Code is decoded by majority voting, e.g. for instance

! Error in decoding is introduced if all the bits are inverted (a code 
word is swapped into another code word) or two bits are 
inverted (code word damaged resulting its location on a wrong 
side of decoding decision region)

( , ) (1 ) , 1α α α α−   = − ≈ <<   
   

i n i i
n n

P i n
i i

1 111 0 000→ →

001 0, 101 1→ →

2 3(3,3) (2,3) 3 2weP P P α α= + ≈ −
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Parity-check Coding

! Note that repetition coding can greatly improve transmission 
reliability because

! However, due to repetition transmission rate is reduced. Here 
the code rate was 1/3 (that is the ration of the bits to be coded to 
the encoded bits)

! In parity-check encoding a check bit is formed that indicates 
number of “1”:s in the word to be coded

! Even number of “1”:s mean that the the encoded word has 
always even parity

! Example: Encoding 2-bit words by even parity is realized by

Note that for error detection encoded word parity is checked 
(how?)

2 33 2 , 1α α α α= − << = <<we eP P

00 000, 01 011
10 101, 11 110

→ →
→ →
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Parity-check Error Probability

! Note that the error is not detected if even number of errors have 
happened

! Assume n-1 bit word parity encoding (the encoded word has 
thus n bits) and consider the probability to have 2 bit errors only 
(this would mean that the error would not be revealed eg error 
would be produced to decoder output)

! Without error correction, an n-1-bit word will have a decoding 
error with probability

21 (2, ) ( 1) / 2weP P n n nα α<< ⇒ ≈ ≈ −

0 1 1

prob. to have no errors

( 1)!1 (0, 1) 1 (1 ) 1 (1 )
( 1)!

( 1)

n n

uwe

nP P n
n

n

α α α

α

− −−= − − = − − = − −
−

≈ −
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Parity-check Error Probability (cont.)
! Hence we note that parity checking is a very efficient method of

error detection: Example:

! At the same time information rate was reduced by 9/10 only
! Most telecommunication channels are memoryless AWGN 

channels or fading multipath channels
! In memoryless channels bits are considered to be 

independent
! In fading multipath channels transfer function changes as a 

function of time
– Interleaving can be used to make bits more independent 

This can be realized by
• block interleaving
• convolutional interleaving

! Problem of interleaving is delay that is 50% smaller for 
convolutional interleavers. Also their memory requirement is 
50% smaller.

3 2 510, 10 , 10 , 5 10uwe wen p pα − − −= = ≈ ≈ ×
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Block Interleaving

! In fading channels received data can experience burst errors 
that destroy large number of consecutive bits. This is harmful for 
channel coding

! Interleaving distributes burst errors along data stream
! A problem of interleaving is 

introduced extra delay
! Example below shows block 

interleaving: time

received 
power

Reception after 
fading channel

1 0 0 0 1 1 1
0 1 0 1 1 1 0
0 0 1 1 0 0 1

1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1

1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1

Received interleaved data:

Block deinterleaving :

Recovered data:
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Representing Codes by Vectors
! Hamming distance d(X,Y) is the number of bits that are different 

in code words

! Code strength is measured by minimum Hamming distance:
– Codes are more powerful when their minimum Hamming 

distance dmin (over all codes in the code family) is as large as 
possible

! Codes can be mapped into 
n-dimensional grid: 

3-bit repetition code 3-bit parity code

(1 0 1), (11 0) ( , ) 2= = ⇒ =X Y d X Y

(n,k) encoder(n,k) encoder
k bits in    n bits out
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Hamming Distance and Code Error Detection  
and Correction Capability
! Channel noise can produce non-valid code words that are 

detected at the receiver
! Number of non-valid code words depends on dmin, and 

consequently the number of errors that can be detected at the 
reception is

If l +1 errors produced (for instance by noise/interference), 
received code word is transformed into another code word

! The number of errors that can be corrected is

If more bit errors than t is produced, maximum likelihood 
detection can not decide correctly in which decision region 
received code belongs

min 1= −l d

/ 2=   t l    (denotes the integer part)
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Code Efficiency and the Largest Minimum 
Distance
! The largest possible minimum distance is achieved by 

repetition codes that is

where n and k are the number of bits in the encoded word and 
in the word to be encoded respectively. Code rate is a measure 
of code efficiency and it is defined by

! Note that q=n - k bits are added for error detection/correction
! We noticed that repetition codes have a very low efficiency 

because their rate is only 1/n. On the contrary, parity check 
codes have much higher efficiency of (n-1)/n and and they have 
still a relatively good performance.

min max
1= − +d n k

/ 1= ≤CR k n

(n,k) encoder(n,k) encoder
k bits in    n bits out
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Hard and Soft Decision Decoding
! Hard decision decoding

– each received code word is compared to the applied codes and 
the code with the minimum Hamming distance is selected

! Soft decision decoding
– decision reliability is estimated from demodulator’s analog 

voltage after matched filter by Euclidean distance
! Finally, the code word with the smallest distance with respect of the 

all the possible code words is selected as the received code word  

0        1        1        1       0

+0.4
+0.2

+1.0

-0.2

+0.6 Decision threshold

Decision voltage after matched filter

Hard decisions  -> 0        0        1        1       0

Soft decision weighting -> 2 2 2 2 20.2 0.6 0.4 0.4 0.2 0.76+ + + + =

Hamming distance to TX code word=1

Euclidean distance to TX code word=0.76 

<-Transmitted code word
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Hard and Soft Decoding (cont.)

! Hard decoding:
– calculates Hamming distances to all allowed code words
– selects the code with the smallest distance

! Soft decoding:
– calculates Euclidean distance to all allowed code words
– selects the code with the smallest distance

! Soft decoding yields about 2 dB improvement when compared 
to hard decisions (requires a high SNR)

! Often soft decoding realized by Viterbi decoder. In fading 
channels bit stream is interleaved to avoid effect of burst errors

! Computational complexity in decoding can be reduced by using 
convolutional codes
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Block Codes
! In (n,k) block codes each sequence of k information bits is 

mapped into a sequence of n (>k) channel inputs in a fixed way 
regardless of the previous information bits (in contrast to 
convolutional codes)

! The formed code family should be formed such that the code 
minimum distance and code rate is large -> high error 
correction/detection capability

! A systematic block code: In the encoded word
– the first k elements are the same as the message bits
– q=n-k bits are the check bits

! Therefore a code vector of a block code is

or as a partitioned representation
1 2 1 2( ... .... ),k qm m m c c c q n k= = −X

( | )=X M C

(n,k) encoder(n,k) encoder
k bits in    n bits out
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Block Codes by Matrix Representation

! Given a message vector M, the respective linear, systematic 
block code X can be obtained by matrix multiplication by

! G is the generator matrix with the general structure

where Ik is kxk identity matrix and P is a kxq binary submatrix

( | )= =X M C MG

( | )k=G I P

11 12 1

21 22 2

1 2

q

q

k k kq

p p p
p p p

p p p

 
 
 =
 
 
 

P

%
%

& & &
%
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Example: Hamming Codes
! Hamming codes are defined by

! Take a systematic (n,k) Hamming code with q=3 and n=23-1=7
and k=n - q=7-3=4. The generator matrix is

! In Hamming codes kxq submatrix P includes all the q-bit words 
that have q-1 or q of “1”:s 

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 
 
 
 =
 
 
  I P

G

!""#""$!"#"$

2 1, 2,3,...qn q= − = k n q= −
min 3d =
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Check-bit Equations
! For u message vectors M (each consisting of k bits) the 

respective n-bit block codes X are determined by matrix 
multiplication X=MG

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

1,1 1,2 1, 1,1 1,2 1,1,1 1,2 1,

2,1 2,2 2, 22,1 2,2 2,

,1 ,2 ,

1 0 0
0 1 0

( | )

0 0 1

q

q
k

k k k q

k qk

kk

u u u k

p p p
p p p

p p p

m m m c c cm m m
m m m cm m m

m m m

 
 
 =     

 
 
 = =
 
 
  

G I P

X MG

M

% %
% %

& & & & & &
% %

% %%
%%

& & &
%

!""""#""""$

,1 2,2 2,

,1 ,2 , ,1 ,2 ,

( | )

q

u u u k u u u q

c c

m m m c c c

 
 
 
 
 
  

=X MC

%
& & & & & &

% %
!""""""""#""""""""$

1, 1,1 1, 1,2 2, 1, ,q q q k k qc m p m p m p= ⊕ ⊕ ⊕%
q=n-k check bits generated for each word, for instance
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(7,4) Hamming Encoder
! Therefore we have a four element message register 

implementation for the (7,4) Hamming encoder
! The check bits [c1,c2,c3] are obtained by substituting the 

elements of P and M into equation C=MP or

1 1 2 2 ....= ⊕ ⊕j j j k kjc m p m p m p
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Generated Hamming Codes
! Going through all the combinations of the input vector X, yields

then all the possible output vectors

! Note that for linear codes the minimum distance of each code 
word is the weight w or the number of “1” on each code word 
(distance to ‘00...0’ code word)

! For Hamming codes the minimum distance is 3
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Decoding Block Codes by Hard Decisions

! A brute-force method for error correction of a block code would 
include comparison to all possible same length code structures 
and choosing the one with the minimum Hamming distance 
when compared to the received code 

! In practice applied codes can be very long and the extensive 
comparison would require much time and memory. For instance, 
to get 9/10 code rate with a Hamming code requires that

! This equation fulfills if the code length is at least k=57, 
that results n = 10k/9=63.

! There are                     different block codes in this case! -> 
Decoding by direct comparison would be quite unpractical!

9
2 1 2 1 10q q

k k n q
n

−= = ≥
− −

172 1.4 10= ⋅k
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Syndrome Decoding
! In syndrome decoding a parity checking matrix H is designed 

such that multiplication with a code word X produces all-zero 
matrix:

! Therefore error detection of the received signal Y can be based 
on q=n-k bit syndrome:

that is always zero when a correct code word is received. 
(Note again that the syndrome does not reveal errors if channel 
noise has produced another code word!)

! The parity checking matrix is determined by

or

! Note that P matrix can be the same that was applied in the 
transmitter side

(0 0 0)T =XH %

T=S YH

( | )T
q=H P I T

q

 
=  
 

PH
I
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Syndrome Decoding (cont.)
! Syndrome decoding can be used for error correction by 

checking one-bit error patterns for each syndrome
! Example: Consider a (7,4) Hamming code with a parity check 

matrix

! The respective syndromes and error vectors (showing the 
position of errors by "1") are

1 1 1 0 1 0 0
( | ) 0 1 1 1 0 1 0

1 1 0 1 0 0 1

T
q

 
 = =  
  

H P I

where  is any valid code with
the error in the position indicated by the 
respective syndrome 

T=S YH Y
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Syndrome is Independent of Code Words
! This design enables that the syndrome depends entirely on error 

pattern but not on particular code. Consider for instance

! Syndrome does not determine the error pattern uniquely because 
there exists only 2q different syndromes (syndrome length is q) but 
there exists 2k different codes (for each symbol that must be 
encoded).

! After error correction decoding double errors can turn out even 
triple errors

! Therefore syndrome decoding is efficient for error correction when 
channel errors are not too likely, e.g. probability for double errors 
must be small

! NOTE: Syndrome decoding is anyhow very efficient for error 
detection also in difficult channels

(1 0 11 0)=X (1 0 0 11)= ⇒Y (0 0 1 0 1)=E ( )= +Y X E

'
0, that follows from the defintion of 

( )
→

= ⇒

+ = + =

T

T T T T

H

S YH
X E H XH EH EH

Note also that = +X Y E
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Table Lookup Syndrome Decoder Circuit

! The error vector is used for error correction by the circuit shown 
bellow:

T=S YH T

q

 
=  
 

PH
I

Error subtraction

received code


