

# **Basic of Propagation Theory**

#### S-72.333

#### **Physical Layer Methods in Wireless**

#### **Communication Systems**

#### Fabio Belloni

Helsinki University of Technology

Signal Processing Laboratory

fbelloni@wooster.hut.fi



#### Outline

- Introduction
- Free-Space Propagation
  - Isotropic Radiation
  - Directional Radiation
  - Polarization
- Terrestrial Propagation: Physical Models
  - Reflection and the Plane-Earth Model
  - Diffraction and diffraction losses
- Terrestrial Propagation: Statistical Models
- Indoor propagation
- Conclusions

#### Introduction

- The study of propagation is important to wireless communication because it provides
  - 1) prediction models for estimations the power required to close a communication link  $\Rightarrow$  reliable communications.
  - 2) clues to the receiver techniques for compensating the impairments introduced through wireless transmission.
- The propagation effects and other signal impairments are often collected and referred to as the *channel*.
- Channel models for wireless communications may be defined as *Physical models* and *Statistical Models*.
- RX signal is the combination of many propagation models ⇒ multipath and fading.
- In addition to propagation impairments, the other phenomena that limit wireless communications are *noise* and *interference*.



# **Free-Space Propagation**

- The transmission is characterized by
  - the *generation*, in the transmitter (TX), of an electric signal representing the desired information,
  - *propagation* of the signal through space,
  - a receiver (RX) that estimates the transmitted information from the *recovered* electrical signal.
- The antenna converts between electrical signals and radio waves, and vice versa.
- The transmission effects are most completely described by the Maxwell's equations.
- Here we assume a linear medium in which all the distortions can be characterized by attenuation or superposition of different signals.



## **Isotropic Radiation**

- An antenna is isotropic if it can transmit equally in all directions.
- It represents an ideal antenna and it is used as reference to which other antennas are compared.



# Isotropic Radiation

• The *power flux density* of an isotropic source that radiates power  $P_T$  watts in all directions is

$$\Phi_R = \frac{P_T}{4\pi R^2} \qquad \left\lfloor \frac{W}{m^2} \right\rfloor$$

where  $4\pi R^2$  is the surface area of a sphere.

• The power captured by the receiving antenna (RX) depends on the size and orientation of the antenna with respect to the TX

$$P_R = \Phi_R \ A_e = \frac{P_T}{4\pi R^2} \ A_e$$

where  $A_e$  is the effective area or absorption cross section.

- Effective area of an isotropic antenna in any direction:  $A_e^{iso} = \frac{\lambda^2}{4\pi}$ .
- The antenna efficiency is defined as  $\eta = \frac{A_e}{A}$  where A is the physical area of the antenna.

## **Isotropic Radiation**

• The link between TX and RX power for isotropic antennas is

$$P_R = \left(\frac{\lambda}{4\pi R}\right)^2 P_T = \frac{P_T}{L_P}$$

where  $L_P = \left(\frac{4\pi R}{\lambda}\right)^2$  is the free-space path loss between two isotropic antennas.

- The path loss depends on the wavelength of transmission.
- The *sensitivity* is a receiver parameter that indicates the minimum signal level required at the antenna terminals in order to provide reliable communications.



#### **Directional Radiation**

• Real antenna is not isotropic and it has *gain* and *directivity* which may be functions of the azimuth angle  $\phi$  and elevation angle  $\theta$ .



## **Directional Radiation**

- Transmit antenna gain:  $G_T(\phi, \theta) = \frac{\text{Power flux density in direction}(\phi, \theta)}{\text{Power flux density of an isotropic antenna}}$ .
- Receive antenna gain:  $G_R(\phi, \theta) = \frac{\text{Effective area in direction}(\phi, \theta)}{\text{Effective area of an isotropic antenna}}$ .
- Principle of reciprocity ⇒ signal transmission over a radio path is reciprocal in the sense that the locations of the transmitter and receiver can be interchanged without changing the transmission characteristics.
- Maximum transmit or receive gain

$$\frac{G}{A_e} = \frac{4\pi}{\lambda^2}$$

 Side-lode and back-lobe are not considered for use in the communications link, but they are considered when analyzing interference.



# The Friis Equation: Link Budget

 In case of non-isotropic antenna, the Free-Space loss relating the received and transmitted power is

$$P_R = \frac{P_T \ G_T \ G_R}{L_P} = P_T \ G_T \ G_R \left(\frac{\lambda}{4\pi R}\right)^2 \tag{1}$$

or, as a decibel relation,

 $P_R(dB) = P_T(dB) + G_T(dB) + G_R(dB) - L_P(dB)$ 

where  $X(dB) = 10 \log_{10}(X)$ .

- Closing the link means that the right hand side of eq.(1) provides enough power at the receiver to detect the transmitted information reliably ⇒ RX sensitivity.
- The Friis equation (Link Budget), as presented so far, does not include the effect of noise, e.g. receiver noise, antenna noise, artificial noise, multiple access interference,...



## The Friis Equation: Link Budget

- Let us assume the receiver noise as dominant an let us model it by the single-sided noise spectral density  $N_0$ .
- To include the noise, the Link Budget may now be expressed as

$$\frac{P_R}{N_0} = \frac{P_T \ G_T \ G_R}{L_P \ k \ T_e} \tag{2}$$

where  $N_0 = k T_e$ , k is the Boltzmann's constant and  $T_e$  is the equivalent noise temperature of the system.

• In satellite application, eq.(2) is written as  $\frac{C}{N_0} = \text{EIRP} - L_p + \frac{G}{T} - k$ :  $\diamond \frac{C}{N_0} = \frac{P_R}{N_0} \rightarrow \text{received carrier-to-noise density ratio (dB/Hz)}$   $\diamond \text{EIRP} = P_T \ G_T \rightarrow \text{TX}$  Equivalent Isotropic Radiated Power (dBW)  $\diamond \frac{G}{T} = \frac{G_R}{T_e} \rightarrow \text{RX}$  gain-to-noise temperature ratio (dB/K)  $\diamond L_p \rightarrow \text{Path loss (dB)}$  $\diamond k \rightarrow \text{Boltzmann's constant}$  HELSINKI UNIVERSITY OF TECHNOLOGY SMARAD Centre of Excellence





#### Polarization

- The electric field may be expressed as  $\overrightarrow{E} = E_x \overrightarrow{u}_x + E_y \overrightarrow{u}_y$ .
- In the phasor domain we can write  $\vec{E} = \cos(\alpha)\vec{u}_x + \sin(\alpha)e^{j\phi}\vec{u}_y$ .
  - $\forall \alpha \ \& \ \phi = 0 \Rightarrow$  Linear polarization,
  - $\alpha = \frac{\pi}{4} \& \phi = \pm \frac{\pi}{2} \Rightarrow$  Right-hand (-) and Left-hand (+) circular pol.
- Examples:
  - VP:  $\alpha = \frac{\pi}{2} \& \phi = 0 \Rightarrow \overrightarrow{E} = \overrightarrow{u}_y$ ,
  - HP:  $\alpha = 0 \& \phi = 0 \Rightarrow \overrightarrow{E} = \overrightarrow{u}_x$ ,
  - RHCP:  $\alpha = \frac{\pi}{4} \& \phi = -\frac{\pi}{2} \Rightarrow \overrightarrow{E} = \frac{1}{\sqrt{2}} \overrightarrow{u}_x j \frac{1}{\sqrt{2}} \overrightarrow{u}_y$ ,
  - LHCP:  $\alpha = \frac{\pi}{4} \& \phi = \frac{\pi}{2} \Rightarrow \overrightarrow{E} = \frac{1}{\sqrt{2}} \overrightarrow{u}_x + j \frac{1}{\sqrt{2}} \overrightarrow{u}_y$ ,
- In time domain  $\overrightarrow{E}(t) = \cos(\alpha)\cos(wt)\overrightarrow{u}_x + \sin(\alpha)\cos(wt + \phi)\overrightarrow{u}_y$ .
- Scattering effects tend to create cross-polarization interference.

HELSINKI UNIVERSITY OF TECHNOLOGY SMARAD Centre of Excellence

#### Polarization









#### Polarization

• Example: verify, by using the axial ratio, that a left-hand circular polarization can be identified by setting  $\alpha = \frac{\pi}{4}\& \phi = \frac{\pi}{2}$ .

$$\begin{cases} E_x = \cos(\alpha) = \frac{1}{\sqrt{2}} \\ E_y = \sin(\alpha) \ e^{j\phi} = j\frac{1}{\sqrt{2}} \\ \begin{pmatrix} E_r \\ E_l \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ j\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ R = \frac{|E_l| - |E_r|}{|E_l| + |E_r|} = \frac{1 - 0}{1 + 0} = 1 \end{cases}$$

 $\Rightarrow$  Left-Hand Circular Polarization!



#### Terrestrial Propagation: Physical Models

- They consider the exact physics of the propagation environment (site geometry). It provides reliable estimates of the propagation behavior but it is computationally expensive.
- Basic modes of propagation:
  - Line-of-Sight (LOS) transmission ⇒ clear path between transmitter (TX) and receiver (RX), e.g. satellite communications.
  - Reflection ⇒ bouncing of electromagnetic waves from surrounding objects such as buildings, mountains, vehicles,...
  - Diffraction ⇒ bending of electromagnetic waves around objects such as buildings, hills. trees,...
  - Refraction ⇒ electromagnetic waves are bent as they move from one medium to another.
  - Ducting ⇒ physical characteristic of the environment create a waveguide-like effect.
- RX signal is the combination of this models  $\Rightarrow$  *multipath* and *fading*.



#### Reflection and the Plane-Earth Model



- Plane-Earth propagation equation:  $P_R = P_T G_T G_R \left(\frac{h_T h_R}{R^2}\right)^2$ 
  - Assuming  $R \gg h_T, h_R \Rightarrow$  the equation is frequency independent,
  - inverse fourth-power law,
  - dependence of antennas height.



#### Diffraction

• When electromagnetic waves are forced to travel through a small slit, they tend to spead out on the far end of the slit.



• *Huygens's principle*: each point on a wave front acts as a point source for further propagation. However, the point source does not radiate equally in all the directions, but favors the forward direction, of the wave front.



#### Diffraction

- Fresnel zones are important in order to understand the basic propagation phenomena.
- Rule of thumb: in order to obtain transmission under free-space condition, we have to keep the "first-Fresnel zone" free of obstacles.



HELSINKI UNIVERSITY OF TECHNOLOGY SMARAD Centre of Excellence

#### **Diffraction Losses**



- A perfectly absorbing screen is placed between the TX and RX.
- When the knife-edge is even with the LOS, the electric field is reduced by one-half and there is a 6-dB loss in signal power.



#### Terrestrial Propagation: Statistical Models

- By measuring the propagation characteristics in a variety of environments (urban, suburban, rural), we develop a model based on the measured statistics for a particular class of environments.
- In general, they are easy to describe but they are not accurate.
- The statistical approach is broken down into two components:
  - median path loss;
  - local variations;



#### Terrestrial Propagation: Statistical Models

• Median path loss: investigations motivate a general propagation model such as  $\frac{P_T}{P_R} = \frac{\beta}{r^n}$ , where r is the distance between TX and RX, n is the path-loss exponent and the parameter  $\beta$  represents a loss that is related to frequency, antenna heights, ...

| Environment              | n   |
|--------------------------|-----|
| Free-Space               | 2   |
| Flat Rural               | 3   |
| Rolling Rural            | 3.5 |
| Suburban, low rise       | 4   |
| Dense Urban, Skyscrapers | 4.5 |

• Local variations: the variation about the median can be modelled as a log-normal distribution (shadowing).

# Indoor propagation

- To study the effects of indoor propagations has gained more and more importance with the growth of cellular telephone.
- Wireless design has to take into account the propagation characteristics in high-density location.
- Wireless Local Area Networks (LAN's) are being implemented to eliminate the cost of wiring of rewiring buildings.
- Indoor path-loss model

$$L_P(dB) = \beta(dB) + 10\log_{10}\left(\frac{r}{r_0}\right)^n + \sum_{p=1}^P \mathsf{WAF}(p) + \sum_{q=1}^Q \mathsf{FAF}(q)$$

- WAF  $\Rightarrow$  Wall Attenuation Factor
- FAF  $\Rightarrow$  Floor attenuation Factor
- $r \Rightarrow$  dinstance TX and RX
- $r_0 \Rightarrow$  reference distance (1 m)
- Q and P  $\Rightarrow$  number of floors and walls, respectively.



#### Conclusions

- The link budget may be improved by using directional instead of isotropic antennas.
- There is a trade off between the accuracy and the computational complexity for propagation models.
- The polarization of electromagnetic waves is an important issue for wireless communication.

#### References

- Haykin, S.; Moher, M.; *Modern Wireless Communications* ISBN 0-13-124697-6, Prentice Hall 2005.
- https://ewhdbks.mugu.navy.mil/POLARIZA.HTM
- http://www.walter-fendt.de/ph11e/emwave.htm
- Paraboni, A.; Antenne, McGraw-Hill 1999.
- Saunders, S.; Antennas and Propagation for Wireless Communication Systems, Wiley, 2000.
- Vaughan, R.; Andersen, J.B.; *Channels, Propagation and Antennas for Mobile Communications*, IEE, 2003.
- Bertoni, H.; *Radio Propagation for Modern Wireless Systems*, Prentice Hall, 2000.



#### Homeworks

- Let us assume a right-hand circular polarization with  $E_x = 1$  and  $E_y = -j$ . Compute the loss in dB in a wireless link when the horizontal component is attenuated by 6-dB.
- In case of physical models for terrestrial propagation, which are the basic models of propagation. Explain briefly each of them.