

Er Liu

liuer@cc.hut.fi Communications Laboratory 16.11.2004

Content of presentation

Protocol Classification

Conflict-Free Access Protocols

- Static Allocation
 - ✤ TDMA
 - ✤ FDMA
 - ✤ CDMA
- Dynamic Allocation
 - ✤ Polling
 - Token passing

Contention Access Protocol

- Static Resolution
 - ✤ Aloha
 - Carrier sensing protocols
- Dynamic Resolution
 - ✤ Binary Tree

4 Static Allocation = Fixed Assignment:

- ✤ I.e. fixed allocated channel resource
- ✤ Resource can be frequency, or time, or both
- ✤ Predetermined basis to a single user
- **4** Basic access methods:
 - ✤ FDMA Frequency-Division Multiple Access
 - ✤ TDMA Time-division Multiple Access
- **4** Some other formats:
 - Combination of the basic access methods
 - ✤ Implemented with various multi-user access algorithm

Frequency-Division Multiple Access

- Built upon Frequency-division multiplexing scheme
- It is the simplest and oldest form of multiplexing
- A fixed subchannel is assigned to a user terminal and is retained until released by the user
- At receiver, the user terminal filters the designated channel out if the composite signal
- Currently used in
 - ✤ Cellular mobile telephone
 - ✤ VHF & UHF land-mobile radio system
 - ✤ Satellite networks
- Characteristics:
 - ✤ Efficient when information is steady flow
 - ✤ Inefficient when data are sporadic

FDMA Performance

- System model:
 - ✤ M independent queues
 - ✤ M/G/1 queueing system

$$\hat{D} \;=\; \frac{D}{P/R} \;=\; \left[1 + \frac{S}{2(1-S)}\right] M \;=\; M \frac{2-S}{2(1-S)} \;=\; \frac{M}{2} \left(1 + \frac{1}{1-S}\right)$$

Multiple Access Methods

Time-Division Multiple Access

- Built upon *Time-division multiplexing* transmission format
- Deterministic allocation of time interval *time-slots*
- Time slots are organized into frames
 - ✤ T1 channel : 1.544 Mbits/s
 - ✤ Multiplexing 24 PCM encoded voice channel

Slot for User

✤ Each channel is 64 kbits/s

Each channel sampled at an 8-kHz rate
Each sample is encoded into 8 bits

Used in new digital cellular network

- ✤ Europe (GSM)
- ✤ Japan (JDC)

Multiple Access Methods

TDMA Performance

- System model:
 - ✤ M independent queues
 - ✤ M/D/1 queueing system
- Throughput-Delay

Comparison between FDMA and CDMA

$$D_{FDMA} = D_{TDMA} + \frac{P}{R} \left[\frac{M}{2} - 1 \right] \ge D_{TDMA}.$$

Multiple Access Methods

Hybrid of TDMA and FDMA

- TDMA and FDMA can be implemented together to get optimized function and performance
- ♣ For example
 - TDMA/FDMA
 - TDMA/TDD/FDMA

Multiple Access Methods

Code-Division Multiple Access

- **4** Hybrids combination of FDMA and TDMA
- Characteristics
 - Multiple users
 - Simultaneously operating
 - Entire bandwidth of time-frequency domain
 - Separated by distinct user-signal codes (Spread spectrum)
- 4 Two common CDMA
 - Direct sequence (DS) CDMA
 - Frequency Hopping (FH) CDMA
- Spreading code
 - ML (Maximum length) code
 - Gold code
 - Walsh-Hadamard code

Multiple Access Methods

CDMA --- Spreading

Multiple Access Methods

Dynamic Allocation Protocols

- **4** Dynamic Allocation = On demand
- **4** Realized via reservation schemes
- **4** Basic access methods:
 - Polling
 - Token passing
- 4 Others
 - MSAP
 - MiniSlotted Alternative Priority
 - BRAM
 - Broadcast Recognition Access Method

Multiple Access Methods

Polling Techniques (1)

- Centralized control
 - One station is equipped as a controller
 - Periodically polling all the other stations
- Classification
 - Hub polling
 - Roll polling
- Polling procedure
 - Hub polling
 - ✤ From furthest station
 - ✤ Polled station starts sending if it has something to transmit
 - ✤ If not, a negative response is detected by the controller
 - The polled station transmits the poll mesage to its neighbor in upstream (control)
 - ✤ Control message finally is regained by the controller

Polling Techniques (2)

- Roll polling
 - Controller keeps a polling list, giving the order in which the terminals are polled
 - ✤ Polled station starts sending if it has something to transmit
 - ✤ If not, a negitve reply is detected by the controller
 - ✤ Controller then polls the next terminals in the sequence
 - Initial exchange of short messages required(between a station and the controler)

Multiple Access Methods

Charactertistics and performance

4 Polling protocols are efficient in systems

- Propagtion delay is small
- Overhead is low
- Number of stations shouldn't be large (proportional to overhead)

4 Polling protocols are inefficient

- Lightly loaded
- Part of stations have data to transmit
- Subdivide stations into subsets (variations)
- Hub polling overhead is much smaller than that of roll polling
- **4** Applications:
 - Widely used in dedicated telephone networks for data communications
 - Generally not been adopted in existing mobile data network or WLAN

Token Passing Protocol (1)

- Two logical topologies
 - Bus
 - Ring
- **4** Token ring is originally developed by IBM, specified in IEEE 802.5
- Token ring protocol operation
 - Networks move a small frame, called a token, around the network
 - Possession of the token grants the right to transmit.
 - If the node, receiving the token, has no information to send, it passes the token to the next station.
 - If the node, possessing the token does have information to transmit
 - ✤ Seize the token
 - ✤ Alter 1 bit of the token
 - ✤ Append the information to be transmitted, and send to the next station in the ring
 - The intended destination station flips the recognized address and framecopied bits in frame status field in the frame, and sends the modified frame back out to the ring

Token Passing Protocol (2)

- When information reaches the sending station again, it examines and removed the frame from the ring
- The source station then transmits a new token
- Phycally "star" topology, logically "ring" topology

Multiple Access Methods

Token Ring Characteristics

- Foken passing netowrks are deterministic, so the maximum propagation time is possibly calculated, more predictable than Ethernet
- Priority schemes can be deployed to improve the efficiency
 - User-designated, high priority station can use network more frequently
 - $Priority_{Station} >= Priority_{token}$ can capture the token
- Several mechanisms for detecting and compensating for network fault
 - One station is selected as active monitor
 - It provides centralized source of timing information for other stations
 - Ring-maintenance function
 - Removal of continously circlating frames
 - ✤ Generation of the new token
- 4 No collisions occur, contention-free!

- **4** No guarantee to be successful
 - Large users ->Contention-free schemes are impractical
 - Resolution schemes are needed
- **4** Static resolution
 - Protocol actual behavior is not influenced by the dynamics of the system
 - Examples:
 - ✤ Aloha family
 - ✤ CSMA family
- 4 Dynamic resolution
 - Tracking and taking the advantage of the system changes
 - Example:
 - ✤ Binary-Tree CRP (collision Resolution Protocol)

- **4** It is the simplest contention protocol
- **4** Whenever packet needs transmission:
 - Send without waiting
 - If collision occurs, then wait for a random time and resend, until successful

$$S = Ge^{-2G}$$

Highly inefficient at large loads. Maximum utilization of 18% at a mean load of 0.5

- Time is divided into equal size slots (= packet Tx time)
- **4** Node with new arriving packet: transmit at beginning of next slot
- If collision: retransmit packet in future slots with probability p, until successful.
- Maximum utilization of 36% at a mean load of 1 transmission/slot

Page 23

Slotted Carrier Sensing Protocols

- Carrier sense multiple access with collision detection
- Same as CSMA except a collision is detected
 - Ternimate transmission immediately
- **4** Time slot and non/1-persistent concepts can also be applied

Slotted nonpersistent CSMA/CD

Slotted 1-persistent CSMA/CD

Multiple Access Methods

Collision Resolution Protocol (CRP)

- Concentrate on Resolving Collisions as soon as they occurs
- **4** Exploit feedback information to control the retransmission
- **4** System model:
 - Similar to slotted Aloha
- **4** Typical protocol:
 - Binary-Tree CRP

Binary-Tree Protocol (CRP)

- When collision occurs, the users are divided in two subsets
- Divided method can be like flipping coin
- One subset should wait until the other set has finished transmission
- Within one subset, if collision occurs again, performace in the similar way again
 - Enhanced method: "flipping beforehand"

Multiple Access Methods

[1] Raphael Rom, Moshe Sidi, "Multiple Access protocols: Performance and Analysis"

www-comnet.technion.ac.il/rom/PDF/MAP.pdf

[2] Simon Haykin, Michael Moher, "Modern Wireless Communications" ISBN 0-13-124697-6, Prentice Hall 2005

4 Please explain what is bit-map protocol? What's the advantage and disadvange of this protocol?

What is FDDI, how it works. Please give a brief description on its MAC protocol structure and operation.

Any questions?

Thanks!