

Multiuser Detection for SDMA OFDM

S7233-Postgraduate Course Fernando Gregorio gregorio@wooster.hut.fi

- Smart Antenna applications
 - Beamforming
 - Spatial Diversity Systems
 - Space Division Multiple Access (SDMA)

- Space Division Multiple Access (SDMA)
 - L different users
 - User-specific spatial signature
 - The signal signature generated by the channel over the transmitted signal acts like spreading code in a CDMA system.
 - Multiuser detection techniques known from CDMA can be applied in SDMA-OFDM

Space Division Multiple Access (SDMA)

x = Hs + n

 $x = [x_1, x_2, \ldots, x_p]$

 $s = [s^1, s^2, \dots, s^L]$

 $H = [H^1, H^2, \dots, H^L]$

 $H^{L} = [H_{1}^{L}, H_{2}^{L}, \dots, H_{p}^{L}]$

- Linear detection techniques
 - The different users transmitted signals are estimated with the aid of a linear combiner.
 - The residual interference caused by remaining users is neglected.

$$\hat{s} = \mathbf{W}^{\mathbf{H}} \mathbf{x}$$

- Linear detection techniques
 - L-th user

Fernando Gregorio S72-333 – Multiuser Detection

7

• Linear detection techniques

• Signal to Interference plus Noise Ratio

$$SINR^{(l)} = \frac{\sigma_S^{(l)2}}{\sigma_I^{(l)2} + \sigma_N^2}$$

• Signal to Interference Ratio

$$SIR^{(l)} = \frac{\sigma_S^{(l)2}}{\sigma_I^{(l)2}}$$

• Signal to Noise Ratio $SNR^{(l)} = \frac{\sigma_S^{(l)2}}{\sigma_N^2}$

Linear detector

•Least Squares Error

•Zero Forcing

•Maximize SNR at the receiver

•Minimum squares Error

•Exploits the available statistical knowledge concerning the signals transmitted

Least-squares Error detector

Squared error

 $\|\Delta \hat{x}\|^2 = \Delta \hat{x}^H \Delta \hat{x}$

- Estimation error
$$\Delta \hat{x} = x - \hat{x}$$

$$= x - H\hat{s}$$

Cross-correlation vector

$$p_{LS} = H^H x$$

 $= x^{H}x - 2\Re(\hat{s}^{H}\mathbf{p}_{LS}) + \hat{s}^{H}\mathbf{Q}_{LS}\hat{s}$ Auto-correlation matrix

- Optimum value

$$\begin{aligned}
\widehat{s}_{LS} &= \mathbf{Q}_{\mathbf{LS}}^{-1}\mathbf{p}_{\mathbf{LS}} \\
&= \mathbf{P}_{\mathbf{LS}}\mathbf{x}
\end{aligned}$$

$$\begin{aligned}
\widehat{Q} \| \Delta \widehat{x} \|^{2} \\
\frac{\partial \widehat{s}}{\partial \widehat{s}} \\
\mathbf{P}_{\mathbf{LS}} &= (\mathbf{H}^{\mathbf{H}}\mathbf{H})^{-1}\mathbf{H}^{\mathbf{H}}
\end{aligned}$$

 Least-squares Error detector

- Minimum Mean squares error detector
 - Cost Function $\Delta \hat{s} = s \hat{s}$ = $s - (W^{H}x)$
 - The estimation error's autocorrelation matrix

$$\mathbf{R}_{\Delta \hat{\mathbf{s}}} = E\{\Delta \hat{\mathbf{s}} \Delta \hat{\mathbf{s}}^{H}\}$$

= $\mathbf{P} - \mathbf{R}_{\mathbf{c}}^{\mathbf{H}} \mathbf{W} - \mathbf{W}^{\mathbf{H}} \mathbf{R}_{\mathbf{c}} + \mathbf{W}^{\mathbf{H}} \mathbf{R}_{\mathbf{a}} \mathbf{W}(1)$

$$\begin{aligned} \mathbf{R}_{c} &= E\{\mathbf{xs}^{H}\} & \mathbf{R}_{a} &= E\{\mathbf{xx}^{H}\} \\ &= \mathbf{HP} & = \mathbf{HPH}^{H} + \sigma_{n}^{2}\mathbf{I} \\ \mathbf{P} &= \mathbf{Diag}(\sigma_{1}^{2}, \sigma_{2}^{2}, \dots, \sigma_{L}^{2}) & = \sum_{l=1}^{L} \sigma_{l}^{2}\mathbf{H}^{l}\mathbf{H}^{(l)H} + \sigma_{n}^{2}\mathbf{I} \end{aligned}$$

- Minimum Mean squares error detector
 - The optimum weights are determined minimizing $E\{\|\Delta \hat{s}\|^2\}$

$$W_{\text{MMSE}} = R_{\text{a}}^{-1}R_{\text{c}}$$

= $(\text{HPH}^{\text{H}} + \sigma_{\text{n}}^{2}\text{I})^{-1}\text{HP}$
= $(\text{HP}_{\text{SNR}}\text{H}^{\text{H}} + \sigma_{\text{n}}^{2}\text{I})^{-1}\text{HP}_{\text{SNR}}$

$$P_{SNR} = Diag(SNR^{(1)}, SNR^{(2)}, \dots, SNR^{(L)})$$
$$SNR^{(l)} = \frac{\sigma_l^2}{\sigma_n^2}$$

- Minimum Variance (MV) combining
 - LS
 - Information concerning with the AWGN process is not considered.
 - MMSE
 - Balance between the recovery signals transmitted and the suppression of the AWGN.
 - -MV
 - Recover the original signals while ensuring a partial suppression of the AWGN.
 - The cost-function incorporates both a constraint on the desired user's effective transfer factor as well as the undesired signal's variance. $w_{MV}^{(l)} = \frac{g}{w_{MMSE}^{(l)H} \mathbf{H}^{l}} w_{MMSE}^{(l)}$

- Non-Linear Detection
 - Linear detector assumes that the different users' associated linear combiner output are corrupted only by AWGN
 - Linear combiner output signal contain residual interference which is not Gaussian distributed.
 - LS and MMSE sequential structure.

- Non-Linear Detection
 - The operation of classification can be embedd into the linear combination process.
 - The residual multi-user interference observed at the classifier's input is reduced
 - Successive Interference Cancellation (SIC)
 - Parallel Interference Cancellation (PIC)

- Successive Interference Cancellation (SIC)
 - Only the specific user having the highest SINR, SIR or SNR in each iteration at the output of the LS or MMSE combiner is detected.
 - Having detected this user's signal, the corresponding demodulated signal is subtracted from the composite signal received by the different antenna elements.
 - New iteration.

- Successive Interference Cancellation (SIC)
 - 1. Initialization
 - 2. Detection stage
 - 3. Calculation of remaining user's weight matrix
 - 4. Selection of the most dominant user
 - 5. Detection of the most dominant user
 - 6. Demodulation of the most dominant user.
 - 7. Removing of the most important user contribution.
 - 8. New iteration

Successive Interference Cancellation (SIC)

- M-Successive Interference Cancellation (SIC)
 - Error propagation problems in standard SIC.
 - MSIC-> Track from each detection stage not only the single most likely symbol decision, but an increased number of M· M_c most likely tentative symbol decisions, where M_c denotes the number of constellation points associated with a specific modulation scheme.

- M-SIC (M = 2)
 - First detection step
 - We have a total of M = 2 possible symbol decisions.
 - Second detection step
 - $M^2 = 4$ tentative symbol decisions. and correspondingly,
 - i-th detection stage
 - Mⁱ possible tentative symbol decisions.

S72-333 – Multiuser Detection

- Partial M-SIC
 - The performance improvement potentially observed for the M-SIC scheme compared to the standard SIC arrangement is achieved at the cos
 - the standard SIC arrangement is achieved at the cost of a significantly increased computational complexity.
 - For sufficiently high SNRs the standard SIC detector's performance is predetermined by the bit- or symbolerror probabilities incurred during the first detection stage.
 - If the most dominant user's associated symbol decision is erroneous, its effects potentially propagate to all other users' decisions conducted in the following detection stages.

- Partial M-SIC
 - The symbol error probability specifically of the first detection stage should be as low as possible.
 - The tentative symbol decisions carried out at later detection stages become automatically more reliable as a result of the system's increased diversity order due to removing the previously detected users.
 - M > 1 number of tentative symbol decisions at each detection node are retained, characterized by its associated updated P-dimensional vector of received signals only up to the specific L_{pM-SIC} -th stage in the detection process.
 - At later detection stages only one symbol decision is retained, as in standard SIC scheme.

• PIC

- PIC
- First-stage MMSE detection
 - Combining
 - During the first PIC iteration each user is detected by means of the MMSE combiner.
 - Classification demodulation
 - the linear combiner's output vector $\hat{s}^{[1]} = \hat{s}_{MMSE}$ demodulated resulting in the vector $\check{s}^{[1]}$ of symbols that are most likely to have been transmitted by the L different users.

- PIC
- i-th stage PIC detection (i>1)
 - PIC
 - During the *i-th* PIC iteration a potentially improved estimate of the complex symbol s^(I) transmitted by the *I-th* user is $\widehat{s}_{PIC}^{(l)[i]}$ ained upon subtracting in a first step the *L-1* interfering users' estimated signal contributions, from the original vector *x* of signals received by the different antenna elements
 - Combining
 - Extract an estimate $\hat{s}_{PIC}^{(l)[i]}$ of the signal s^(l) transmitted by the \$l-th\$ user from the l-th user's PIC-related array output vector $\hat{x}_{PIC}^{(l)[i]}$.
 - Classification / demodulation
 - Delivers the symbol $\check{s}^{(l)[i]}$ that is most likely to have been transmitted by the *l*-th user.

Maximum Likelihood detection

- Comparison
 - BER
 - Complexity