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1. INTRODUCTION

Smart antenna designs have emerged in recent years. They
are applied with the main objective of combating the effects
of multipath fading on the desired signal and suppressing
interfering signals, thereby increasing both the performance
and capacity of wireless systems. The more known applica-
tions of smart antenna are beamforming arrangements and
spatial diversity systems. A third application of smart an-
tennas is Space Division Multiple Access (SDMA)[1].

Space-Division-Multiple-Access (SDMA) communica-
tion systems have recently drawn wide interests. In these
systems theL different users transmitted signals are sep-
arated at the base-station (BS) with the aid of their unique,
user-specific spatial signature, which is constituted by the P-
element vector of channel transfer factors between the users
single transmit antenna and the P different receiver antenna
elements at the BS, upon assuming flat-fading channel con-
ditions such as in each of the OFDM subcarriers. In simple
conceptual terms, it is possible to argue that the spatial sig-
nature generated by the channel over the transmitted signal
acts like CDMA spreading code in a conventional CDMA
system.

Multiuser detection techniques known from Code-Division-
Multiple-Access (CDMA) can be applied in SDMA-OFDM
transceivers. Some of these techniques are the Least-Squares
(LS), Minimum Mean-Square Error (MMSE) , Successive
Interference Cancellation (SIC), Parallel Interference Can-
cellation (PIC) and Maximum Likelihood (ML) detection
[2].

Multiuser detection methods can be classified in two
classes of linear and non-linear detection techniques. In the
group of linear detection methods appear LS and MMSE
detection, in which no a priori knowledge of the remaining
users transmitted symbols is required for the detection of a
specific user. In the case of SIC, PIC and ML detection,
non-linear methods, a priori knowledge is involved, which
must be provided by the non-linear classification operation
involved in the demodulation process. In this paper a de-
scription of SDMA-OFDM is introduced in section 2, lin-
ear and non-linear techniques will be developed in section 2

and 3. Implementation complexity and performance will be
evaluated in section 4. Conclusions are included in the last
section.

2. SPACE-DIVISION-MULTIPLE-ACCESS (SDMA)

A Space-Division-Multiple-Access (SDMA) uplink trans-
mission scenario, where each of theL simultaneous users
is equipped with a single transmission antenna, while the
receiver capitalizes on aP -element antenna front-end is il-
lustrated in Figure 1.

The vector complex signals,x[n, k], received by the P-
element antenna array in thek − th subcarrier of the n-th
OFDM symbol is constituted by the superposition of the in-
dependently faded signals associated with theL users shar-
ing the same space-frequency resource. The received signal
was corrupted by the Gaussian noise at the array elements
(the indices[n, k] have been omitted for notational conve-
nience). This signal can be written as

x = Hs + n (1)

wherex = [x1,x2, . . . ,xp] is the received signals vector,
s = [s1, s2, . . . , sL] is the transmitted signals vector and
n is the array noise vector. The frequency domain channel
transfer factor matrixH is constituted by the set of channel
transfer factor vectorsHl with l = 1, . . . , L of the L users:

H = [H1,H2, . . . ,Hl] (2)

each of which hosts the frequency domain channel trans-
fer factors between the single transmitter antenna associated
with a particular userl and the reception antenna elements
p = 1, . . . , P :

Hl = [Hl
1,Hl

2, . . . ,Hl
P] (3)

with lǫ{1, . . . , L}.
For detection techniques analysis will be assumed that

the complex data signalsl transmitted by thel− th user has
zero-mean and a variance ofσ2

l . The AWGN noise process
np at any antenna array elementp exhibits also zero-mean



Fig. 1. SDMA MIMO channel scenario

and a variance ofσ2
n. The frequency domain channel trans-

fer factorsHl
P of the different array elementsp or usersl

are independent, stationary, complex Gaussian distributed
processes with zero-mean and unit variance.

3. LINEAR DETECTION TECHNIQUES

The employment of linear detector is motivated by the ob-
servation that in the context of the optimum Maximum Like-
lihood detector to be discussed in next section a potentially
excessive complexity of ML detector.

In a linear detector the different users transmitted sig-
nals are estimated with the aid of a linear combiner. These
signal estimates would then be demodulated separately for
each of theL users upon neglecting the residual interference
caused by the remaining users in a specific users combiner
output signal.

An estimatês of the vector of transmitted signalss of
theL simultaneous users is generated by linearly combin-
ing the signals received by theP different receiver antenna
elements with the aid of the weight matrixW, resulting in:

ŝ = WHx (4)

using previous equation, and considering thel user’s asso-
ciated vector component

ŝl = w(l)Hx

= w(l)H(Hs + n)

= w(l)HHlsl + w(l)H
L∑

i=1

i6=l

Hisi + w(l)Hn (5)

where the weight vectorw(l) is the l − th column of
the weight matrixW. We observe from Equation 5 that
the combiners output signal is constituted by three additive
components. The first term

ŝl
S = w(l)HHlsl (6)

denotes the desired users associated contribution which vari-
ance is given byσ(l)2

S = w(l)HRl
a,Sw

(l) whereRl
a,S =

σ2
l H

(l)H(l)H is the autocorrelation matrix of the desired
user.

The second term

ŝl
I = w(l)H

L∑

i=1

i6=l

Hisi (7)

denotes the interfering users residual contribution. The vari-
ance is given byσ(l)2

I = w(l)HRl
a,Iw

(l) whereRl
a,I =

∑L
i=1

i6=l
σ2
l H

(l)H(l)H is the autocorrelation matrix of the in-

terfering user signals.
Finally, the last term

ŝl
N = w(l)Hn (8)

is related to the AWGN which variance isσ
(l)2
N = w(l)HRl

a,Nw(l)

whereRa,N = σ2
nI is the diagonal noise autocorrelation

matrix .
The undesired signals auto-correlation matrix is related

to the sum of the residual interference plus the AWGN ex-
pressed asRl

a,I+N = Rl
a,I + Ra,N.

Three different performance measures can be defined on
the basis of the desired signals varianceσ

(l)2
S , the interfer-

ing signals varianceσ(l)2
I and the noise varianceσ2

N . These
measures can be employed for characterizing the quality of
the linear combiners output signal. These are the Signal-
to-Interference plus- Noise Ratio (SINR) at the combiners
output, defined as

SINR(l) =
σ

(l)2
S

σ
(l)2
I + σ2

N

(9)

the Signal-to-Interference Ratio (SIR), defined as

SIR(l) =
σ

(l)2
S

σ
(l)2
I

(10)

and the Signal-to-Noise Ratio (SNR) given by

SNR(l) =
σ

(l)2
S

σ2
N

(11)

3.1. Least-Squares Error detector

The Least-Squares (LS) error or Zero-Forcing (ZF) com-
biner attempts to recover the vectors[n, k] of signals trans-
mitted by theL different users in thek − th subcarrier of
then − th OFDM symbol period, regardless of the signal
quality quantified in terms of the SNR at the reception an-
tennas.

Assuming perfect knowledge of the channel transfer fac-
tor matrixH an estimatêx of the vector of signals received
by theP different antenna elements in a specific subcarrier



is given byx̂ = Hŝ. The estimation error in the received
signal’s domain can be expressed as

∆x̂ = x − x̂

= x − Hŝ

The squared error is given as

‖∆x̂‖
2

= ∆x̂H∆x̂

= xHx − 2ℜ(ŝHpLS) + ŝHQLSŝ (12)

wherepLS = HHx is the cross-correlation vector and
QLS = HHH is the auto-correlation matrix.

In order to determine the desired vector representing the
estimated transmitted signals of theL users is obtained min-
imizing the squared error. In the optimum point of opera-
tion, associated with the weight matrix having the optimum

weights, the conjugate gradient∂‖δx̂‖2

∂ŝ is equal to zero. Af-
ter some mathematical manipulations we obtain

ŝLS = Q−1
LSpLS

Substituting the values of the auto-correlation and cross-
correlation matrix, the vector LS of estimated transmitted
signals of the L simultaneous users can be written as

ŝLS = PLSx

where the projection matrix PLS isPLS = (HHH)−1HH.
More specifically, the matrixPLS projects the vectorx of
theP different antenna elements’ received signals onto the
column space of the channel matrixH.

The average estimation Mean-Squared error(MSE) eval-
uated in the transmitted signal domain is given by

¯MSELS =
1

L
Trace(R∆ŝLS

)

=
1

L
σ2

nTrace((HHH)−1)

Thel − th user’s associated minimum MSE is given as
thel − th diagonal element of the matrixR∆ŝLS

MSE
(l)
LS = σ2

nw
(l)H
LS w

(l)
LS

= σ2
n((HHH)−1)[l,l] (13)

3.2. Minimum Mean-Squares Error detector

In contrast to the LS combiner, the Minimum Mean-Square
Error (MMSE) detectors associated MMSE combiner ex-
ploits the available statistical knowledge concerning thesig-
nals transmitted by the different users, as well as that related
to the AWGN at the receiver antenna elements.

The cost-function employed directly reflects the quality
of the combiner weights in the transmitted signals’ domain.

The vector∆ŝ of the L simultaneous users’ estimation er-
rors evaluated in the transmitted signals’ domain can be de-
fined as

∆ŝ = s − ŝ

= s − (WHx)

The estimation error’s auto-correlation matrixR∆ŝ is
given by

R∆ŝ = E{∆ŝ∆ŝH}

= P − RH
c W − WHRc + WHRaW (14)

whereRc is the cross-correlation matrix of the received
and transmitted signals

Rc = E{xsH}

= HP (15)

The matrixP is the diagonal matrix of the different
users’ associated transmit powers or signal variances, given
by P = Diag(σ2

1 , σ2
2 , . . . , σ2

L).
Ra is the auto-correlation matrix of the received signals

Ra = E{xxH}

= HPHH + σ2
nI

=

L∑

l=1

σ2
l H

lH(l)H + σ2
nI

The sum of the auto-correlation matricesRa,S , Ra,I and
Ra,N constitutes the auto-correlation matrixRa.

Ra = Rl
a,S + Rl

a,I+N (16)

Determining the weight matrix on the basis of evaluat-
ing the gradient of the total-mean square estimation error
E{‖∆ŝ‖2} with respect to the different users total mean-
square estimation error results in the standard form of the
MMSE combiner, which is related to the right-inverse of
the channel matrix H.

The total-mean square estimation error is given by

E{‖∆ŝ‖2} = Trace(R∆ŝ)

= Trace(P) − Trace(RH
c W) −

− Trace(WHRc) + Trace(WHRaW)

(17)

The matrixW of the optimum weigths can be deter-
mined minimizingE{‖∆ŝ‖2}. Applying derivates and math-
ematical manipulations, the optimum weights are

WMMSE = R−1
a Rc

= (HPHH + σ2
nI)−1HP

= (HPSNRHH + σ2
nI)

−1HPSNR(18)



wherePSNR is the diagonal matrix of the different users’
associated SNRs at the receiver antennas
PSNR = Diag(SNR(1),SNR(2), . . . ,SNR(L)) in which

thel − th user SNR is given bySNR(l) =
σ2

l

σ2
n

.
The autocorrelation matrix of the estimation error as-

sociated with the different users’s transmitted signal is ex-
pressed asR∆ŝMMSE

= P− RH
c WMMSE.

The average estimation Mean-Squared error(MSE) eval-
uated in the transmitted signal domain is given by

¯MSEMMSE =
1

L
Trace(R∆ŝMMSE

)

(19)

Thel − th user’s associated minimum MSE is given as
thel − th diagonal element of the matrixR∆ŝLS

MSE
(l)
MMSE = σ2

l (1 − H(l)HR−1
a H(l)σ2

l )

= σ2
l (1 − H(l)Hw

(l)
MMSE) (20)

3.3. Minimum Variance (MV) Combining

In LS combiners philosophy was to fully recover the orig-
inal signal transmitted without relying on any information
concerning the AWGN process, which corrupts the signal
received by the different antenna elements. By contrast, the
philosophy of the MMSE combiner was to strike a balance
between the recovery of the signals transmitted and the sup-
pression of the AWGN.

An attractive compromise is constituted by the MV ap-
proach, which aims for recovering the original signals trans-
mitted while ensuring a partial suppression of the AWGN
based on the knowledge of its statistics. In other words, the
l− th users associated weight vectorw(l) has to be adjusted
such, that its transfer factor assumes a specific predefined
value ofg = w(l)HH(l).

Usually the MV combiner is derived by minimizing a
Lagrangian cost-function, which incorporates both a con-
straint on the desired users effective transfer factor, as well
as the undesired signals variance. However the different
combiners associated weight vectors, namely those of the
MMSE, MV and Maximum SINR combiners, differ only
by a scalar multiplier. Hence, the MV-related weight vector
w

(l)
MV of the l − th user can be directly inferred from the

MMSE-related weight vectorw(l)
MMSE by simple normal-

ization according to

w
(l)
MV =

g

w
(l)H
MMSEHl

w
(l)
MMSE (21)

4. NON-LINEAR DETECTION

In linear detection, the strategy is first to provide linear es-
timates of the different users transmitted signals and thento

perform the non-linear classification- or demodulation sep-
arately for each user. This philosophy was based on the as-
sumption that the different users associated linear combiner
output signals are corrupted only by the residual AWGN. In
fact the linear combiners output signals also contain residual
interference, which is not Gaussian distributed and hence
represents an important source of further information.

Instead of sequentially performing the operations of lin-
ear combining and classification or demodulation as in the
linear detectors , a more effective strategy is to embed the
demodulation into the process of linear combining, which
is known from the family of classic channel equalizers as
decision-feedback. As a result, the residual multi-user inter-
ference observed at the classifiers inputs is reduced. Hence,
the classifiers accuracy due to neglecting the residual inter-
ference is less impaired.

Two of the most prominent multi-user detection tech-
niques known from CDMA communications, which incor-
porate these ideas are the SIC and PIC detection techniques.
These techniques are also applicable in the context of com-
municating over flat-fading channels as observed for exam-
ple on an OFDM subcarrier basis.

4.1. SIC Detection

The philosophy of the Successive Interference Cancellation
(SIC) assisted detector is motivated by two observations.
First of all, we note that for a specific sub-carrier the MSE
and SINR at the output of the LS or MMSE combiner might
substantially differ for the different users, depending ontheir
spatial signatures. Secondly, upon increasing the MIMO
systems diversity order the MSE performance of the LS
or MMSE combiner and correspondingly the systems BER
performance is improved as a consequence of assigning a
higher grade of diversity to mitigate the effects of fading.

Hence, an attractive strategy, which has recently drawn
wide interests is to detect only the specific user having the
highest SINR, SIR or SNR in each iteration at the output
of the LS or MMSE combiner. Having detected this users
signal, the corresponding remodulated signal is subtracted
from the composite signal received by the different antenna
elements. Furthermore, the channel transfer factor matrix
and the SNR matrix formulated in the context of the MMSE
combiner and its left-inverse related form are updated ac-
cordingly.

In Figure 4 the SIC detector block diagram is shown.
During the first iteration the signalsxp, with p = 1, . . . , P
received by the different antenna elements are directly fed
into the selective linear combiner, where we havex[1] = x
at the detection stage or iteration ofi = 1. The task of the
selective linear combiner is to identify the most dominant
remaining user in terms of itsSINR at the combiner output
from the set of(L− i+1) remaining users during thei− th
detection stage and to provide its signal estimateŝ(l[i])[i] at
the combiner’s output. The selection of the most dominant



user can be expressed as

l[i] = arg max(SNR(l)[i]) (22)

Under the assumption that thel[i]−th user has been found to
be the most dominant one among theL[i] remaining users
at thei − th detection stage, the detect user’s transmitted
signal is

ŝ(l[i])[i] = w(l[i])[i]Hx[i] (23)

The selectedl[i]−th user’s linear signal estimatês(l[i])[i]

is then classified- or demodulated according to

š(l[i])[i] =
arg min
š/σiǫMc

∣∣∣∣∣
1

H
(l[i])[i]
eff

ŝ(l[i])[i] − š

∣∣∣∣∣

2

(24)

yielding the amplified constellation pointš(l[i])[i] that is
most likely to have been transmitted by thel[i] − thuser.

Now the corresponding modulated signal can be regen-
erated. The influence of thel[i]−th user’s modulated signal
is then removed from the vectorx[1] of signals received by
the different antenna elements with the aid of the SIC mod-
ule. This cancellation operation is described by

x[i+1] = x[i] − H(l[i])š(l[i])[i] (25)

The influence of thel[i] − th users associated channel
transfer factor vectorH(l[i]) is eliminated from the auto-
correlation matrixR[i]H

a , yielding the reduced-dimensional
matrix

R[i]H
a → R[i+1]H

a (26)

which new size is(L[i] − 1) × (L[i] − 1).
The first iteration(i = 1) is deemed to have been com-

pleted, when the decontaminated signal appears at the out-
put of the SIC stage. Hence, beginning with the second SIC
iteration the selective linear combiner’s input, namely the
decontaminated vectorx[i] of signals received by the differ-
ent antenna elements, which contains only the influence of
the(L− i+1) remaining users, is constituted by the output
of the SIC module, provided that correct symbol decisions
were conducted in the previous detection stages.

The role of the switches is to indicate that at the first de-
tection stage the SIC is directly fed with the signals received
by the different array elements, while during the remaining
iterations ofi = 2, ..., L with the partially decontaminated
composite signal of the remaining(L − i + 1) users.

M-SIC The standard SIC detectors performance is im-
paired as a result of the error-propagationoccurring between
the different consecutive detection stages. A viable strategy
of reducing the error propagation effects is to track from
each detection stage not only the single most likely symbol
decision, but an increased number ofM ≤ Mc most likely
tentative symbol decisions, whereMc denotes the number
of constellation points associated with a specific modulation
scheme.

To provide an example, forM = 2 in the first detection
stage we have a total ofM = 2 possible symbol decisions,
while in the second detection stageM2 = 4 tentative sym-
bol decisions and correspondingly, in thei − th detection
stage we encounterM i possible tentative symbol decisions.
Associated with each tentative symbol decision there is a
specific updated vector of signals, generated by canceling
the effects of the most dominantL − i + 1 number of users
from the P-dimensional vector of signals received by theP
number of different antenna elements. Hence, in the fol-
lowing detection stage the MMSE combining has to be per-
formed separately for the different updated P-dimensional
vectors of received signals. Correspondingly, the number
of parallel tentative symbol decisions to be tracked is in-
creased by the factor ofM compared to that of the cur-
rent detection stage. This process can conveniently be por-
trayed with the aid of a tree-structure, as shown at Fig-
ure 2, where M = 2 was used. Specifically, each detec-
tion node represents an updated P-dimensional vector of
signals received by the P different antenna elements, while
the branches are associated with the various tentative sym-
bol decisions at thei = 1, . . . , L detection stages. Note that
the first detection node at the top of the figure is associated
with the original P-dimensional vector of signals received
by the different antenna elements. In the final detection
stage, after the subtraction of the least dominant user’s es-
timated P-dimensional signal contribution, a decision must
be made concerning which specific combination of L num-
ber of symbols - represented by the branches connecting the
different detection nodes - has most likely been transmitted
by theL different users in the specific subcarrier considered.
A suitable criterion for performing this decision is given by
the Euclidean distance between the original P-dimensional
vector of signals received by theP different antenna ele-
ments and the estimated P-dimensional vector of received
signals based on the tentative symbol decisions and upon
taking into account the effects of the channel.

The performance improvement potentially observed for
the M-SIC scheme compared to the standard SIC arrange-
ment is achieved at the cost of a significantly increased com-
putational complexity. This is since the number of parallel
tentative symbol decisions associated with a specific detec-
tion stage is a factor of M higher than that of the previous
detection stage, and hence in the last detection stage we po-
tentially have to considerML number of different tentative
symbol decisions.

Partial M-SIC
A viable approach of further reducing the associated

computational complexity is motivated by the observation
that for sufficiently high SNRs the standard SIC detectors
performance is predetermined by the bit- or symbol-error
probabilities incurred during the first detection stage. This
is, because if the most dominant users associated symbol
decision is erroneous, its effects potentially propagate to all
other users decisions conducted in the following detection



Fig. 2. a) Standard SIC b) Partial M-SIC c)M-SIC

stages.
The symbol error probability specifically of the first de-

tection stage should be as low as possible, while the ten-
tative symbol decisions carried out at later detection stages
become automatically more reliable as a result of the sys-
tems increased diversity order due to removing the previ-
ously detected users. Hence, our suggestion is to retain
M > 1 number of tentative symbol decisions at each detec-
tion node, characterized by its associated updated P-dimensional
vector of received signals only up to the specificLpM−SIC−
th stage in the detection process.

4.2. PIC Detection

PIC detector’s structure is shown in Figure 6. From the sec-
ond section, the specific structure of the vectorx of signals
received by the different antenna elements can be written

x = Hs + n

= H(l)s(l) +
L∑

i=1

i6=l

H(i)s(i) + n (27)

Specifically, from the component representation given
by the last equation we observe that the array output vec-
tor x is composed of thel − th user’s signal contribution
vector and theL − 1 interfering users’ signal contribution
vectors plus the AWGN vector. Hence, if initial estimates
š(i) with iǫ{1, . . . , L} of the interfering users’ transmitted
signals would be available, a noisy estimatex̂(l) of thel−th
user’s signal contribution could be obtained upon removing
theL − 1 interfering users’ estimated signal contributions
given byH(i)š(i) with iǫ{1, . . . , L} from the vectorx of
signals received by the different antenna elements. An esti-
mateŝ(l) of the l − th user’s transmitted signal could then
be inferred by linear antenna diversity combining. The PIC
detector operation can be resumed in the following explana-
tion

First-Stage - MMSE Detection

• Combining

During the first PIC iteration each user is detected by
means of the MMSE combiner.

• Classification/Demodulation

Then the linear combiner’s output vectorŝ[1] = ŝMMSE

is demodulated resulting in the vectorš[1] of symbols
that are most likely to have been transmitted by theL
different users.

i − th Stage: PIC Detection

• Parallel Interference Cancellation

During thei − th PIC iteration wherei ≥ 2 a poten-
tially improved estimatês(l)[i]

PIC of the complex symbol
s(l) transmitted by thel − th user is obtained upon
subtracting in a first step theL − 1 interfering users’
estimated signal contributions, from the original vec-
tor x of signals received by the different antenna ele-
ments, which can be expressed as

x̂
(l)[i]
PIC = x −

L∑

j=1

j6=l

H(j)š(j)[i−1] (28)

• Combining

The final task is hence to extract an estimateŝ
(l)[i]
PIC of

the signals(l) transmitted by thel − th user from the
l − th user’s PIC-related array output vectorx̂

(l)[i]
PIC .

This results in the weight vectorw(l)[i]
MMSE given by

w
(l)[i]
MMSE =

Hl

‖Hl‖
2

+ (1/SNR(l)
(29)

With the aid of this weight vector an estimateŝ(l)[i] =

ŝ
(l)[i]
PIC of the l − th user’s transmitted signals(l) can

then be extracted from the vectorx̂
(l)[i]
PIC seen at the

output of the linear MMSE combiner̂s(l)[i] = w
(l)[i]H
MMSE x̂

(l)[i]
PIC .

• Classification/Demodulation

The above PIC and MMSE-combining steps are again
followed by the classification, demodulation stage which
obeys

š(l[i])[i] =
arg min
š/σiǫMc

∣∣∣∣∣
1

H
(l[i])[i]
eff

ŝ(l[i])[i] − š

∣∣∣∣∣

2

(30)

where the l-th user’s effective channel transfer factor
H

(l)[i]
eff is given byH(l)[i]

eff = w
(l)[i]
MMSEH(l)

In other words, the classification/demodulation oper-
ation delivers the symboľs(l)[i] that is most likely to
have been transmitted by thel − thuser.

The i − th PIC iteration described above potentially
has to be performed for all the different SDMA users
namely, forl = 1, . . . , L



5. MAXIMUM LIKELIHOOD (ML) DETECTION

Maximum Likelihood (ML) detector is optimum from a sta-
tistical point of view. An associated disadvantage is its po-
tentially excessive computational complexity, which results
from the strategy of jointly detecting theL different users.
This implies assessing theML

c possible combinations of
symbols transmitted by theL different users by evaluating
their Euclidean distance from the received signal, upon tak-
ing into account the effects of the channel.

The definition of the vectorx of signals received by the
P different antenna elements isx = Hs + n.

We observe thatx CN(Hs,Rn), namely x is a sample
of anL−dimensional multi-variate complex Gaussian dis-
tribution, having a vector of mean values given byHs and
a covariance matrixRn = σ2

nI implying that the different
noise contributions are assumed to be uncorrelated.

In simple verbal terms the ML detector finds the specific
L − dimensional vector ofMc − ary symbols, which is
most likely to have been transmitted. In more formal terms
ML detection is based on the idea of maximizing the a pos-
teriori probabilityP (š|x,H).

This maximization procedure can be expressed as:

šML =
arg max
šǫML P (š|x,H) (31)

As observed in this equation , determining theML sym-
bol estimate requires comparing the Euclidean distance be-
tween the vectorx of signals actually received by the dif-
ferent antenna elements and the vectorH of signals, which
would be received in the absence of AWGN, for all the dif-
ferent vectors of symbol combinations contained in the set
ML. The complexity associated with this evaluation might
potentially be excessive, depending on theML

c number of
vectors contained in the trial-setML.

6. COMPARISON OF DIFFERENT DETECTION
TECHNIQUES

6.1. BER performance

In Figure 3 the different detectors SDMA-OFDM related
BER performance are compared for an uncoded scenario.
As expected, the best performance is exhibited by the most
complex ML detector, closely followed by the M-SIC scheme,
where M = 2. By contrast, a significant BER degradation is
observed for the standard SIC scheme potentially as a re-
sult of the effects of error propagation through the different
detection stages. The second worst performance is exhib-
ited by the PIC arrangement, while a further degradation by
about 1.25dB is incurred upon employing the rudimentary
MMSE detection. Specifically, the PIC detectors perfor-
mance was impaired by the lower-power users, potentially
propagating errors to those users, which benefited from a
relatively high SNR at the first-stage combiner output.

Fig. 3. BER performance

MMSE std. SIC M-SIC PIC ML
CC∗C 133.33 344.58 454.58 197.33 4608
CC+C 135.33 335.33 467.33 233.33 5632
CR≤.R 16 25 97 32 256

Table 1. Computational Complexity of the different detec-
tion schemes

6.2. Complexity

Having compared the various detection techniques, namely
MMSE, SIC, M-SIC, PIC and ML in terms of the associated
system’s BER performance, in this section we will compare
them with respect to their computational complexity.

Table 1 shows the computational complexity of the dif-
ferent detection schemes, namely MMSE, standard SIC, M-
SIC, PIC and ML detection quantified in terms of the num-
ber of complex multiplications and additionsCC∗C , CC+C

as well as the number of real-valued comparisonsCR≤.R

for a scenario ofL = P = 4 simultaneous users and recep-
tion antennas; specifically for M-SIC the number of tenta-
tive symbol decisions per detection node was equal toM =
2, while in all scenariosMc = 4 constellation points were
assumed, which is for example the case in conjunction with
4 − QAM modulation.

As expected, the lowest computational complexity ex-
pressed in terms of the number of multiplications is exhib-
ited by the MMSE detector, followed by PIC, standard SIC
and M-SIC, while the highest complexity is exhibited by the
optimum ML detector.



Fig. 4. SIC detector

Fig. 5. Summary of SIC detector

Fig. 6. PIC detector



Fig. 7. Summary of PIC detector
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8. HOMEWORK

In few words explains the advantages ofM−SIC detection
over standardSIC detection.


