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THE BASIC DIGITAL TRANSMISSION SYSTEM 

 
� {cn} is the sequence of transmitted data symbols 
� s(t) is the transmitted signal, where htx(t) determines the transmitted pulse 

for each symbol, the average transmitted symbol energy is Etx 
� Hc(f) is the transfer function of the transmission channel which distorts the 

transmitted pulse 
� r(t) is the received signal distorted by the transmission channel and 

perturbed by additive noise 
� Hrx(f) is the receiver filter 
� z(t) is the input signal to the sampler and decision circuit 
� ���� ����nc����  is the sequence of detected data symbols in the receiver output 

� To is the total transmission delay 
�  This is a very simplified and idealized transmission system model  
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Problem definition 
 
1���� The noise causes uncertainty in the receiver about which symbol is 

actually transmitted  
2���� The channel distortion causes the used pulse to overlap to other symbol 

intervals ���� intersymbol interference in symbol sequence transmission  
���� additional uncertainty about the transmitted symbol 

3���� A concequence of noise and inter-symbol interference is that the 
receiver symbol decision circuit will sometimes produce symbol errors 

4���� Due to the random nature of noise and the transmitted symbols causing 
ISI, also the symbol errors occurs in a random manner  
���� system performance must be characterized by probabilistic measures 
and system analysis is done with statistical methods 

5���� The design of an optimum receiver is aimed to minimize the probability 
of symbol errors (bit errors) 

6���� This is achieved by finding the optimum symbol decision algorithm and 
the optimum receiver filter (and transmitter filter) 

7���� In practice non-ideal implementation or the use of sub-optimal solutions 
will cause performance degradation and the optimum receiver gives a 
reference performance to which actual performance can be compared 
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System models 
� Transmission models 

� single symbol 
� symbol sequence: burst, continuous, full response, partial response 
� binary/M-ary transmission 
� parallel transmission: MIMO, MISO, SIMO, SISO 
� uncoded/channel coded transmission 

� Channel models 
� AWGN-channel (Additive White Gaussian Noise) TI/FF, TV/FF, 

TI/SF, TV/SF 
� ACGN-channel (Additive Colored Gaussian Noise) TI/FF, TV/FF, 

TI/SF, TV/SF 

� Receiver models 
� symbol-by-symbol detection 
� symbol sequence detection 
� Equalizer receiver 
� Diversity receiver 
� RAKE-receiver 
� MUD-receiver 
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DIGITAL REFERENCE RECEIVERS 

(Those marked by “����” are treated more in detail) 
 

� Single symbol optimum receiver in the AWGN-channel 

���� Single symbol optimum receiver in the ACGN-channel 

� Symbol sequence receiver in the AWGN-channel with symbol-by-symbol 
decision 

���� Symbol sequence receiver in the band-limited AWGN-channel with 
symbol-by-symbol decision, ISI-elimination with raised-cosine filtering 

���� Symbol sequence receiver in the band-limited AWGN-channel with 
symbol-by-symbol decision, controlled ISI elimination with partial 
response signalling 

���� Symbol sequence receiver in the band-limited AWGN-channel with 
symbol-by-symbol decision, MSE-approach 

���� Symbol sequence optimum receiver in the band-limited AWGN-channel  
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SINGLE SYMBOL OPTIMUM RECEIVER IN THE AWGN-
CHANNEL: Outline of the treatment 
 
���� Derivation of the MAP decision rule given a known received signal vector 

in a channel with additive noise 
 ���� ���� ���� 				 ���� �������� 				���� ���� iˆ : decision areas Dk i i k ir c MAX P c p r c� �� �� �� �  

���� Derivation of the symbol error probability 

 ���� 				 ���� �������� 				 ���� 				 ���� 				 ���� 				,i k j i i i
i

P e c P r D c i j P e P c P e c
 � � 

 � � 

 � � 

 � � 
 



  

���� Conversion of received pulse waveforms into signal vectors using 
orthonormal function expansion  

 ( ) ( ) ( ) ( )k k j ijir r t t dt t t dt� � � �� � � �� � � �� � � �
 

 

 

 
� �� �� �� �  

���� The concept of sufficient statistics and the choice of orthogonal functions 
���� The optimum receiver in the AWGN-channel 
 correlation receiver ���� matched filter receiver 
���� PAM-signalling and its performance in the AWGN-channel 
���� Orthogonal signalling and its performance in the AWGN-channel 
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THE OPTIMUM DECISION RULE IN A VECTOR 
CHANNEL CONTAINING ADDITIVE NOISE 

 
The output of a vector channel containing additive noise is a N-component 
signal sample vector iR S N
 �
 �
 �
 � , where 

 

  ���� ���� ���� ���� ���� ����1 2 1 2 1 2, , ..., , , , ..., , , , ...,T T T
N i i i iN NR r r r S s s s N n n n
 
 

 
 

 
 

 
 
  

                   (1a,b,c) 
The optimum decision rule maximizes the average probability of a correct 
symbol decision and minimizes the average symbol error probability.  
The average probability of a correct symbol decision is 
 
 ���� 				( ) ... ( )P c p R P c R dR



 � � �� � �� � �� � �           (2) 
 
Because the joint density function and the conditional probability of a correct 
decision are positive, the average probability is maximized if the conditional 
probability is maximized for each possible R-vector. 
 
The conditional probability of a correct decision can be expressed as 
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 ���� 				 ���� 				ˆ ,i iP c R P c c R c
 

 

 

 
            (3) 
 
The optimum decision rule calculates the a posteriori probabilities 
���� 				ˆ kP c c R



  for all symbols kc  and chooses the symbol that maximizes the a 

posteriori probability. This gives the Maximum A Posteriori (MAP) decision 
rule 
 
 ���� 				���� ����ˆ ˆk k

k
c c MAX P c c R
 � 

 � 

 � 

 � 
          (4) 

 
The MAP-decision rule in this form is not very practical because of the 
difficulty to calculate the a posteriori probabilities. Application of Bayes' rule 
gives a more tractable expression: 
 

 ���� 				 ���� 				 ���� 				 ���� 				ˆ
( )

k k
k k

P c p R c
P c c R P c R

p R

 
 

 
 

 
 

 
 
       (5) 

 
There is no need to use the joint density function of R when comparing the 
different ck-values, so the decision rule takes its final form  
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  (6) 
 
 
���� P ck( ) is the a priori probability of the possible symbol values. In most cases 

( ) 1kP c M



 . 
� ���� 				kp R c  is the joint density function of the received vector samples 

conditioned on the symbol value 
 
There is another, sub-optimum decision rule which doesn't consider the sym-
bol probabilities. That is called the Maximum Likelihood (ML) decision rule 
 
 ���� 				���� ����ˆ , 1,2, ...,k k

k
c c MAX p R c k M
 � 

 � 

 � 

 � 
       (7) 

 
The ML-receiver is more easily implemented than the MAP-receiver. For 
equally probable symbol values their performance is also equal. In practice the 
degradation is minor unless very large unbalance in the symbol probabilities. 
From the MAP decision rule follows that the vector signal space can be 
divided into separate decision areas, in each of which a certain symbol 

���� 				 ���� 				���� ����ˆ , 1,2, ...,k k k
k

c c MAX P c p R c k M
 � 

 � 

 � 

 � 
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maximizes the posterior probability. The borders between the decision areas 
Di and Dj can be solved from the equality 
 
 ���� 				 ���� 				 ���� 				 ���� 				i i j jP c p R c P c p R c



           (8) 
 
 
In the decision area D1 the symbol 
c1 maximizes the posterior 
probability. If the noise vector 
brings the signal vector R e.g. to the 
decision area D2 the receiver will 
make an erraneous decision. The 
error probability is a measure of the 
receiver performance. 
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GENERAL EXPRESSION OF THE SYMBOL ERROR 
PROBABILITY 
 
If the receiver always makes a decision (also other reception strategies may be 
used) then on a given transmitted symbol the error event is defined in the 
following way: 
 
 ���� ���� ���� ���� ,i j ie c R D c j i
 � �
 � �
 � �
 � �             (9) 
 
Correspondingly the event of a correct decision is defined: 
 
 ���� ���� ���� ����i i ic c R D c
 �
 �
 �
 �               (10) 
 
It is obvious that the union of the both events form the entire decision space: 
 
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ����i i i i i i ic c e c R D c R D c S c� 
 � � � 
� 
 � � � 
� 
 � � � 
� 
 � � � 
      (11) 
 
and consequently 
 
 ���� ���� ���� ����1i iP e c P c c
 �
 �
 �
 �               (12) 
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When the channel contains additive noise the SEP can be calculated in two 
ways: 
 
 ���� ���� ... ( )

i
i n i

S D
P e c p R S dR

����

 �
 �
 �
 �� � �� � �� � �� � �            (13) 

or 
 
 ���� ���� 1 ... ( )

i
i n i

D
P e c p R S dR
 � �
 � �
 � �
 � �� � �� � �� � �� � �           (14) 

 
Because the decision areas are separate the average SEP can be calculated 
with the total probability formula: 
 

 ���� 				 ���� 				
1

( )
M

k k
k

P e P c P e c










 



              (15) 
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CONVERSION OF RECEIVED PULSE WAVEFORMS 
INTO SIGNAL VECTORS USING ORTHONORMAL 
FUNCTION EXPANSION  
 
In practice digital transmission takes place using analog pulse waveforms, so 
that a different pulse is used for each symbol value. The MAP-receiver how-
ever, bases its decision on signal vectors. Now the receiver must be able to 
convert the received time-continuous pulse into a signal vector preferably with 
as few components as possible. 
One way to do this is to use suitable functional representations of the signals 
involved. In this case the pulses can be expanded into series: 
 

 
1

( ) ( )
K

i ik k
k

s t s t����










 



               (16) 

 
where ����k(t) are the base functions and the vector components can be calculat-
ed by correlating the pulse signal with the base functions: 
 
 ( ) ( )ik i ks s t t dt����



 ����               (17) 
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Next problem is how to choose the base functions. It appears that SEP-
calculations are more convenient if the base functions are chosen so that the 
noise components are statistically independent and their statistical properties 
are easily determined.  
In the AWGN-channel this is achieved if the base functions form an 
orthonormal function set. An orthonormal set fulfils the condition 
 

 
0

( ) ( )
T

i j ijt t dt� � �� � �� � �� � �



����               (18) 

 
In the more general ACGN-channel the base functions are solutions to the 
integral equation 
 

 
0

( ) ( ) ( )
T

n k k kR t u u du t� � �� � �� � �� � �� 
� 
� 
� 
����            (19) 

 
where Rn(����) is the autocorrelation function of the additive noise and ����k is the 
eigenvalue corresponding to the eigenfunction ����k(t). 
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Next the desired properties of the orthonormal function expansion in the 
AWGN-channel are demonstrated. 
 
The noise vector components are 
 
 ( ) ( )k kn n t t dt����



 ����               (20) 
 
It follows that the expectation of the noise components are 
 
   ���� ���� ���� ����( ) ( )k kE n E n t t dt����



 ����            (21) 
 
so zero-mean noise produces zero-mean noise components. 
 
The cross-covariance of two noise components is 
 
 ���� ���� ���� ����( ) ( ) ( ) ( )k l k kE n n E n t t dt n u u du� �� �� �� �



 � �� �� �� � ���� ����( ) ( ) ( ) ( )k lE n t n u t u dtdu� �� �� �� �



 � �� �� �� �  

      ( ) ( ) ( )
2
o

k l
N

t u t u dtdu� � �� � �� � �� � �
 �
 �
 �
 �� �� �� �� � ( ) ( )
2 2
o o

k l kl
N N

t t dt� � �� � �� � �� � �
 

 

 

 
����  

                    (22) 
It appears that the noise components are uncorrelated and therefore 
statistically independent at least in the Gaussian case and of equal power. 
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THE CONCEPT OF SUFFICIENT STATISTICS AND THE 
CHOICE OF ORTHOGONAL FUNCTIONS 
  
Because of the AWGN an infinite number of orthonormal function would be 
needed to completely represent the received signal. If, however, only a finite 
number of functions is needed to represent all the used pulse wave forms, or 
 
 0,iks k K� �� �� �� �                (23) 
 
then due to the statistical independence of the noise vector components the 
density function of the received signal vector conditioned on a given 
transmitted symbol is: 
 
���� 				 ���� 				 ���� 				 ���� 				 ���� 				 ���� 				1 1 1 1 1 2... ...i n i n i n K iK n K n Kp R c p r s p r s p r s p r p r� �� �� �� �
 � � � � � �
 � � � � � �
 � � � � � �
 � � � � � �  

                    (24) 
But in the comparison of the posterior probability no attention needs to be 
paid to the factors not depending on i, so the K first components form a 
sufficient statistics for decision. 
A minimum set of orthonormal functions can be obtained with the Gram-
Schmidt algorithm. Often clever reasoning will do as well. 
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The Gram-Schmidt algorithm 
The signal set to be represented is ���� ����( ) , 1,2, ...,is t i M



 , where all signals 
vanish outside the time interval [-T/2, T/2] 
Definitions: 
 

Signal norm: 2( ) ( ) x
T

x t x t dt E��������
����
 

 

 

 
        (25) 

 
Signal correlation: , ( ) ( )x y

T
x t y t dt���� 



 ����          (26) 

 
The first orthonormal function is obtained by normalizing an arbitrary signal 
function. e.g. 
 

1
1

1

( )( )
( )

s t
t

s t
���� 



               (27) 
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The second orthonormal function is obtained by taking next arbitrary signal 
function, subtracting its projection on the previous orthonormal function, and 
normalizing the difference, e.g. 
 

 2 1

2 1

2 , 1
2

2 , 1

( ) ( )
( )

( ) ( )
s

s

s t t
t

s t t
����

����

� �� �� �� �
����

� �� �� �� �

� �� �� �� �






� �� �� �� �
          (26) 

 
The rest of the orthonormal function are obtained by taking the next arbitrary 
signal function, subtracting from that its projection on all previous 
orthonormal functions, and dividing the difference with its norm, i.e. 
 

 

1
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� �� �� �� �





         (27) 

 

If the minimum set is already obtained, Eq. (27) will produce zeroes. 
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Example 1.  Application of the Gram-Schmidt algorithm 
 
Original signal set, M = 4 

 
 

���� 				 ���� 				
���� 				

1
1 31 2

0

6rect
3 3 6rect

3T

t Ta
x t T t Tt

T Tx t
a dt

����

�  �  �  �  ����
! "! "! "! " �  �  �  �  ����# $# $# $# $
 
 

 
 

 
 

 
 
 ! "! "! "! "

# $# $# $# $
����

 

 

2 1

3
,

0

3
3

T
x

Ta dt a
T�������� 
 

 

 

 
����  

 

t

x1(t)

T/3 2T/3 T
t

x2(t)

T/3 2T/3 T
t

x3(t)

T/3 2T/3 T
t

x4(t)

T/3 2T/3 T

a a a a

 



 20 
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The next last expression is obtained by graphical inspection 
 
As the duration and amplitudes of both orthonormal functions are equal, and 
the amplitude of the third signal is constant the correlation are equally large: 
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Again the next last expression is obtained by  
graphical inspection 
 
As above the correlations 
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The four signals can thus be represented with only three orthonormal 
functions, which is the minimum set. 
 
The same size will be obtained regardless of in which order the signals are 
selected, but the orthonormal function set will be different. 
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The signal vectors are: 
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THE OPTIMUM RECEIVER IN THE AWGN-CHANNEL 
 
It is assumed that K vector components form a sufficient statistics. With 
AWGN the conditional density function of the received signal vector is 
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                    (28) 
Because lnf(x) is a monotonic function of f(x), it is maximized for the same x-
value as f(x). Logarithmization of the decision function brings some computa-
tional advantages, so the MAP-receiver can maximize the function 
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Only terms containing the index i need to be considered in the MAP-receiver. 
It is also easy to show that the last sum represents the energy of the received 
pulse waveforms. Therefore the MAP decision rule in the AWGN-channel can 
be written as 
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Block diagram of the correlation receiver according to the equation above 
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The optimum receiver can also be implemented in an alternative way. The 
response to r(t) of a filter with the impulse response  ( ) ( )k kh t T t����
 �
 �
 �
 �  is 
 

 ( ) ( ) ( ) ( ) ( )k ky t r u h t u du r u T t u du����
6 66 66 66 6
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On the time instant t = T the filter output is 
 

 ( ) ( ) ( )k ky T r u u du r����
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so this so called matched filter gives the same output as the corresponding cor-
relator in the correlator receiver. The block diagram of the matched filter re-
ceiver is shown in the figure below. 
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Both the correlator receiver and matched filter receiver are optimum single 
symbol receivers in the AWGN-channel in the sense that they minimize the 
symbol error probability. In an arbitrary channel the correlator receiver will 
make decision according to the least error energy ���� 				2( ) ( )ir t s t dt�������� , while the 
matched filter receiver will maximize SNR at the decision time instant, but 
they don't necessarily minimize SEP.   
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EXAMPLE 2. Optimum receiver for binary antipodal signalling and its 
performance in the AWGN-channel 
 
In binary antipodal signalling the symbol values and their probabilities are 
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         (33a,b) 

 
The received pulse waveforms are thus 
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               (34a,b) 

 
The choice of base functions is straightforward, only one function is needed 
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Each signal vector comprises one component: 
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                   (36a,b) 
 
The signal vector ends define a geometrical pattern which is called the signal 
constellation. In the actual case the constellation points are on a straight line, 
we have a one-dimensional signal geometry. 
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The threshold u between the decision areas is solved from the equality 
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In the general case this equation can be written as 
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Taking the logarithm of both sides one gets 
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from which u can be solved: 
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                     (40) 
The former expression is valid for any one-dimensional constellation, while the 
latter expression is valid for antipodal signalling. With equiprobable symbol 
the threshold value u = 0.  
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Symbol error probability 
 
When the symbol c1 is transmitted a decision error is made if r > u, and when 
the symbol  c2 is transmitted a decision error is made if r < u 
 
The conditional symbol error probabilities are given by the surfaces under the 
density function  
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Integration of the first conditional 
probability gives: 
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Changing the integration variable 
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where Q(x) is the complement of the normal cumulative distribution function, 
which is a tabulated function. 
 
The second conditional error probability can be determined in the same man-
ner, but can also be obtained more directly by utilizing the symmetry of the 
noise density function. 
The surface under the left density function tail is the same as the surface of a 
right density function tail starting at the same distance from the mean value. 
Therefore 
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In both cases the argument of the Q-function is the ratio between the distance 
from the constellation point to the decision area border and the r.m.s. noise. 
This can be generalized also to other cases than the optimum receiver. 
 
The general expression of the symbol error probability is 
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                     (45) 
Insertion of the actual values gives 
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With unequal symbol proba-
bilities the MAP decision 
threshold is moved and the 
BEP will change. 
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MPAM-signalling and its performance in the AWGN-
channel 

 
MPAM = M-ary Pulse Amplitude Modulation 

In single symbol transmission the received MPAM-signal is 
 
 ( ) ( ) ( )r t cx t n t
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 �                (47) 
 
where c obtains the values 88881, 88883, 88885,...8888(M-1). Each value occures with the 
same probability: P(ci) = 1/M. 
 
The choice of orthonormal functions is simple, only one function is needed 
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Each signal vector comprises one component: 
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The constellation of 8PAM and the density functions conditioned on the 
transmitted symbol value are given in the figure below.  
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With equally probable symbol values the borders between decision areas are 
halfway between the constellation points. 
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probability of the edge symbols: 
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The conditional symbol error probability of the inner symbols: 
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The average symbol error probability: 
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The last version is valid for the optimum receiver in the AWGN-channel, 
whereas the second last version is valid for any ideal channel containing 
additive Gaussian noise. 
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It is more usual to express SEP as function of average received energy. The 
average energy can be derived from the pulse energy in the following way: 
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                    (53) 
This leads to the following SEP-expression: 
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Sometimes SEP is presented as a function of the average bit energy. Because 

 2
22

23 log1( ) 2 1
log 1

s b
b

o

E EM
E P e Q

M M NM

�  �  �  �  �����  �  �  �  
 � 
 � �
 � 
 � �
 � 
 � �
 � 
 � �! "! "! "! "! "! "! "! " ! "! "! "! "# $# $# $# $ ����# $# $# $# $
   (55) 

Further one can represent SEP as function of maximum symbol energy. 
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Bit error probability 
Transmission performance requirements are often defined in terms of bit 
error probability (BEP). BEP will depend on how bits are mapped into 
symbols.  
When a symbol error occurs at least one bit is erroneous, but in the worst case 
all bits can be erroneous.  
It is likely that a symbol error will lead to a symbol in an adjacent decision 
area. Therefore the bits should be mapped into symbols in such a way that the 
symbols in adjacent decision areas differ only in one bit. In MPAM-systems 
this is achieved with Gray-coding. 
However, it is possible that an erroneous decision gives a symbol in a decision 
area outside the adjacent areas to the correct decision area. Especially on high 
BEP-values a more exact analysis is needed to get an good BEP-estimate.  
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THE GRAY CODER 

Coder input sequence:   ���� ����1 2, , ..., , 2K
Kc c c M



  

 
Coder output sequence :  ���� ����1 1 2 2 3 1, , , ..., ,K Kc c c c c c c K bits����9 9 99 9 99 9 99 9 9  
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Example 3: BEP of a Gray-coded 4PAM-system 
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First we look for eventual symmetries by analyzing the number of bit errors 
for different symbol errors. 
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Because of symmetry only the two first symbols need to be investigated 
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Now the conditional bit error probabilities are: 
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The average BEP is 
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The last part of the expression is an approximate value which is less than 1% 
in error if BEP < 0,1. 
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Table 1. 10log(Eb/No)-values and bandwidths needed for different BEP-values 

with the optimum receiver when the bit rate is constant 
 
   M BEP = 10-3 BEP = 10-6 BEP = 10-9 spectrum efficiency 
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    4 
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  6.8 dB 
  7.6 
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16.4 
21.3 
26.3 
31.5 
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10.5 dB 
11.4 
15.8 
20.5 
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30.7 
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12.6 dB 
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27.7 
32.9 
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ORTHOGONAL signalling and its performance in the 
AWGN-channel 

In orthogonal single symbol transmission the received signal is 
 
 r t s t n ti( ) ( ) ( )



 ����             (57) 
 
where i = 1, 2, 3,..., M, and each pulse waveform is orthogonal with respect to 
any other pulse waveform. We will assume that each waveform (or the 
corresponding symbol occures with the same probability: P(ci) = 1/M. 
 
The choice of basis functions is straightforward, because the pulse waveforms 
are orthogonal they form an orthonormal set after normalization:  
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The dimension of the signal vector equals the number of symbols, but each M-
dimensional signal vector comprises only one component differing from zero. 
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Example 4: Orthogonal PPM 
 
A simple set of orthogonal function are time-shifted rectangular pulses. In the 
binary case we get the pulse waveform shown in the figure below. 
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The signal vectors are 
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The example can be easily generalized, but a graphical presentation of the 
orthogonal constellation is difficult when M > 3. 
 
 
 
 
 
 
 
 
 
Average symbol error probability 
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An exact closed-form SEP-expression cannot be given, because the decision 
areas are not right-angled, which is necessary with Gaussian noise. An 
exception is the binary case, where the optimum receiver SEP is: 
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      (59) 

 
An SEP-expression in integral form for the general M-orthogonal optimum 
system can be obtained in the following way. 
 
A symbol error occurs if the distance between the received vector and an other 
constellation point is shorter than the distance to the constellation point 
corrresponding to the transmitted symbol.  
 
The event of a correct decision can be defined as 
 
 ���� ���� ���� ����i jc i R S R S i j i
 � : � > �
 � : � > �
 � : � > �
 � : � > �        (60) 

 
On the other hand is 
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If we assume that all pulse waveforms have equal energy, the event of a 
correct decision can be simplified to 
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When the symbol Si is transmitted the received signal vector components are 
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The correct decision probability conditioned on a certain symbol and a given 
vector component value is: 
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Due to the statistical independence and equal distributions of the noise 
components this conditional probability can be rewritten as: 
 

 ���� 				 ���� 				 ���� 				
11 21 2, 1

MM
M

i n
o

P c i r P n p x dx Q
N

???? ????? ?? ?? ?? ?

��������
����

�6�6�6�6

% &% &% &% &�  �  �  �  % &% &% &% & ' (' (' (' (! "! "! "! "% &% &% &% &
 
 : 
 
 �
 
 : 
 
 �
 
 : 
 
 �
 
 : 
 
 �' � (' � (' � (' � () *) *) *) * ' (' (' (' (! "! "! "! "' (' (' (' () *) *) *) * # $# $# $# $) *) *) *) *

 

                 (65) 
Because of the symmetry of the constellation the conditionl probability doesn't 
depend on the transmitted symbol i and after averaging over a and subtraction 
from 1 we get the average symbol error probability: 
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For other cases than M = 2 this must be numerically computed. 
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SEP union upper bound 
 
A symbol error will occur if any of the other noise components are larger than 
the component corresponding to the transmitted symbol or  
 
 ���� 				 ���� 				1 1 1, ... ...i i i MP e i r P n n n n? ? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? ? ?� �� �� �� �
 
 � � � �
 
 � � � �
 
 � � � �
 
 � � � �� � � � �� � � � �� � � � �� � � � �  (67) 
 
The probability of a union cannot easily be determined, but application of the 
union bound gives a simple upper bouind. 
 
From probability theory it is known that 
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Application of the union bound gives the following upper bound for the 
conditional SEP: 
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Averaging over the symbols and4?4?4?4?-values gives 
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A comparison of this integral with the integral in the conditional probability of 
a correct decision shows that this integral equals that integral for the binary 
case. But this probability was derived sepatately and is known, so the upper 
bound can be expressed as 
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This upper bound will be quite tight on low SEP-values. 
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The average bit error probability 
 
We assume the symbols to be equiprobable and that all pulse waveforms have 
the same energy. 
 
Due to the nature of orthogonal signalling the probability to be in a certain 
erraneous decision area in a symbol error situation is the same for all error 
symbols. Therefore bit mapping into symbols is not an important issue, any 
mapping will give the same bit error performance. 
 
The probability of being in a certain decision area, given a symbol error is 
1/(M-1).  
 
The number of decision areas where one gets N bit errors is given by the 

binomial factor 
K
N
�  �  �  �  
! "! "! "! "
# $# $# $# $

, where K M



 log2  is the number of bits in a symbol.  
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The average bit error probability is 
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                     (72) 
The sum of of binomial factors is 2K-1, which gives average BEP: 
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Using the SEP union bound: 
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Table 2. 10log(Eb/No)-values and bandwidths are needed for different BEP-

values with the optimum receiver with constant bit rate, and BW 
being the bandwidth of binary transmission. 

 
   M BEP = 

10-3 
BEP = 
10-6 

BEP = 
10-9 

spectrum efficiency 
22 logbR M

B M
<<<< 
 =
 =
 =
 =  

    2 
    4 
    8 
  16 
  32 
  64 
128 
256 

9.8 dB 
7.3 
6.1 
5.3 
4.7 
4.3 
3.9 
3.7 

13.5 dB 
10.8 
  9.3 
  8.2 
  7.5 
  6.9 
  6.4 
  6.0 

15.6 dB 
12.7 
11.1 
10.0 
  9.2 
  8.5 
  8.0 
  7.5 

  1.00 
  1.00 
  0.75 
  0.50 
  0.3125 
  0.1875 
  0.109375 
  0.0625 

 
A comparison with the corresponding table for MPAM shows the radically 
different natures of MPAM and M:ary orthogonal signalling. The former is 
suitable for use in situations with bandwidth constraints but no power 
constraints while the latter is suitable for use in channels with power 
constraints but no bandwidth constraints. 
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