Software Defined Radio

15.2.2005 Kari Pietikäinen Communications Laboratory

Outline

- Motivation
- Concept
- Applications
- Features
- Programmability
- Architecture
- Implementation
- Drawbacks
- Conclusion
- Homework
- References

What?

"...a radio that includes a transmitter in which the operationg parameters of the transmitter, including the frequency range, modulation type or maximum radiated or conducted output power can be altered by making a change in software without making any hardware changes" -FCC definition

FCC, federal communications commission

Motivation (1/2)

- Continuous transition from analog to digital
 software defines waveforms
 analog signal processing is replaced with DSP
 - analog signal processing is replaced with DSP
- Evolving technologies
 - \Box NMT >> GSM >> UMTS >> ???
 - □ infrastructure upgrades
- Multimode devices
 - □ 4G devices
 - legacy devices
 - same device for different networks

Motivation (2/2)

Reusable devices

 devices can be upgraded
 software update

 Increasing DSP capabilities

 computational power increases
 power consumption decreases

 Money

Concept

- Software replaces hardware as much as possible
 - reduces costs
 - □ increases versability
- Equipment/infrastructure 'recycling'
 - by software updates
- Anything is possible
 - within the current limits

Applications

Military

- □ real-time flexibility
- secure
- Commercial
 - □ international connectivity
- Civilian
 - portable command for crisis management
- Bluetooth, WLAN, GPS, Radar, WCDMA, GPRS, GSM, PCS, DECT, AM, FM, etc.

Features (1/3)

- Reconfigurability
 - co-existence of multiple software modules implementing different standards
 - dynamic configuration both in terminals and in infrastructure equipment
 - future-proof, multi-service, multi-mode, multiband, multi-standard terminals and infrastructure equipment

Features (2/3)

Ubiquitous Connectivity

- if the terminal is incompatible with the network technology, an appropriate software module is installed (over-the-air)
- the infrastructure equipment can adjust to the legacy terminals

Features (3/3)

Interoperability

- □ SDR facilitates implementation of open architecture radio systems
- End-users can use third-party applications seamlessly

Programmability (1/2)

Hardware radio
 no software changes

Software controlled radio

- □ in PDR, BB operations and link layer protocols are implemented in software.
- Software defined radio
 - SDR system is one in which the BB processing as well as DDC/DUC modules are programmable.
 PDR, programmable digital radio

BB, baseband DDC/DUC, digital down/up converter

Programmability (2/2)

Ideal software radio

 programmability is extended to the RF section

 Ultimate software radio

 in a single chip, no external antenna and no restrictions on operating frequency
 intended for comparison purposes only

Architecture (1/3)

- The digital radio system consists of three main functional blocks
 - □ RF section
 - □ IF section
 - BB section
- RF section is essentially analog hardware
- IF and BB are digital

RF, radio frequency IF, intermediate frequency

Architecture (2/3)

- BB operations include
 - channel coding
 - source coding
 - control functionality
- BB modem functionality
 - new and adaptive modulation schemes
 - self-adaptive or download control
- IF signal processing
 - terminal capable to adapt to multiple radio interface standards

Architechture (3/3)

Object-oriented approach

 hardware abstraction
 SW portability
 definition of interfaces (API)

 Parameter approach

 general structure is the same
 modules configured by changing parameters

Implementation (1/2)

Implementation (1/2)

	FPGA	DSP
Programming language	VHDL, Verilog	C, Assembly
Performance	Can be very fast	DSP chip clock speed
Reconfigurability	SRAM-type FPGAs: infinite	Changing the program
Advantages against the other	FIR & IIR filters, correlator, convolver, FFT, etc	Signal processing program of sequential nature
Parallelism	Can be parallized to achieve high performance	Sequential, cannot be parallized.

Multiantenna systems

Drawbacks (1/2)

- Wide instantaneous bandwidth and high dynamic range both in analog and digital domains required.
- As the receiver bandwidth increases, it becomes more susceptible to more interferes
- Support for multiple channels/modes simultaneously?

Drawbacks (2/2)

Multimode

- e.g. transceiver should support WCDMA, CDMA-2000, GSM, D-AMPS etc...
- Spectrum allocations
 - □ bands from 400 MHz to more than 2,2 GHz
 - SDR front end should be capable to cover wide range with high dynamic range

Conclusions (pro)

- With SDR anything is possible
 within the current limits
- From hardware desing to software desing
- Reusability, reconfigurability, recycling
- Multimode devices
 - single device is adequate
- Cheaper

Conclusions (con)

- Large computational power is needed
 especially IF section (modem, DDC/DUC)
- Power consumption
 - battery sizes
- Complexity
 multimode devices
- A/D performance
 - □ accuracy, linearity, sampling rate, resolution
- Higher initial costs

Homework

What is Software Defined Radio? (FCC definition is not accepted)

References

- Software-Defined Radio, White Paper, Wipro Technologies
- Software-Defined Radio: Facets of a Developing Technology, IEEE Personal Communications, April 1999
- PG seminar course: Software Radios, Fall 2004, University of Oulu. http://www.ee.oulu.fi/~juntti/sdr.html