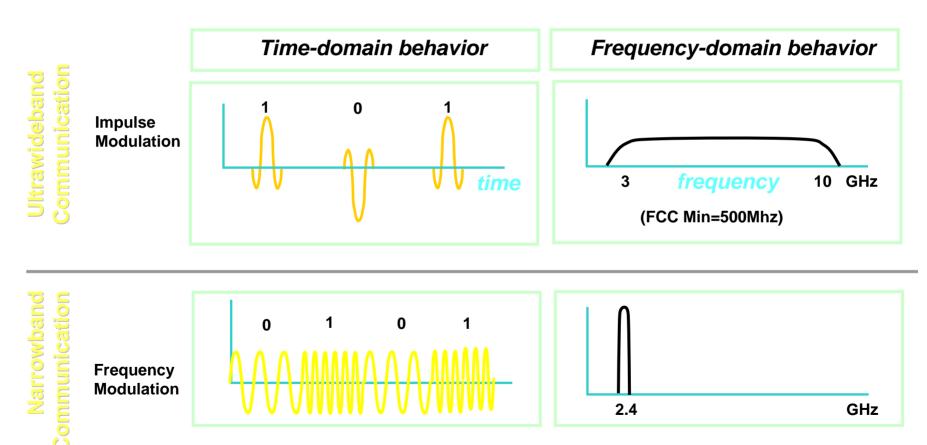


### Mohammad Abualreesh

Mohammad.Abualreesh@hut.fi


# Outline

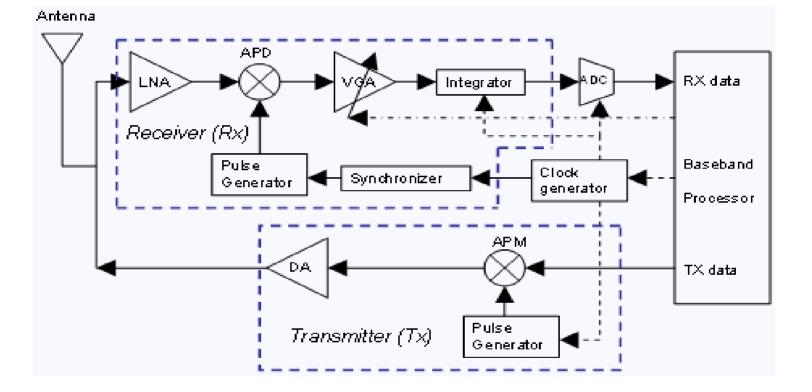
# UWB basicsUWB for WPAN

# UWB basics

### What is UWB?

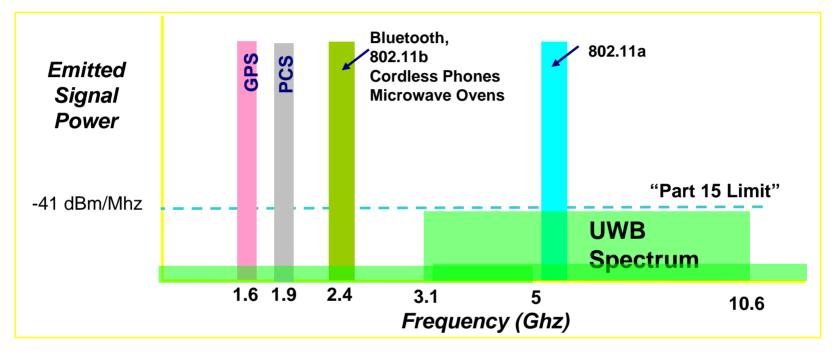
UWB is a radio technology that modulates impulse based waveforms instead of continuous carrier waves




# Channel model

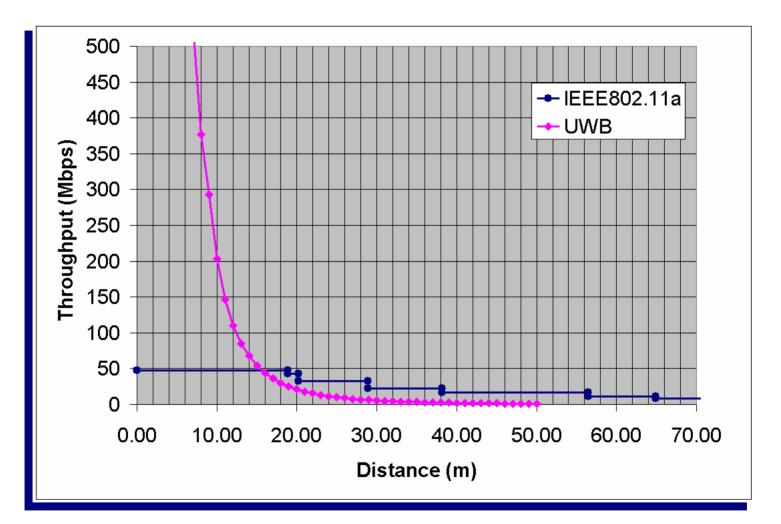
The UWB channel can be described by its time-variant impulse response  $h(t, \tau)$ , which can be expressed as

$$h(t,\tau) = \sum_{n=1}^{N(t)} a_n(t)\delta(t-\tau_n(t))e^{j\theta_n(t)}$$
(1)


where the parameters of the *n*th path  $a_n, \tau_n, \theta_n$ , and N are amplitude, delay, phase, and number of relevant multipath components, respectively.

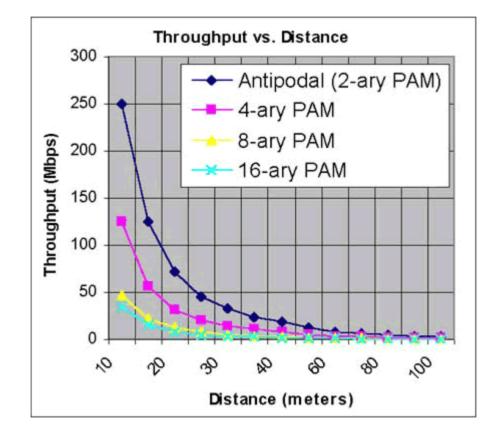
### **UWB Transceiver System Diagram [12].**




### **UWB** Spectrum

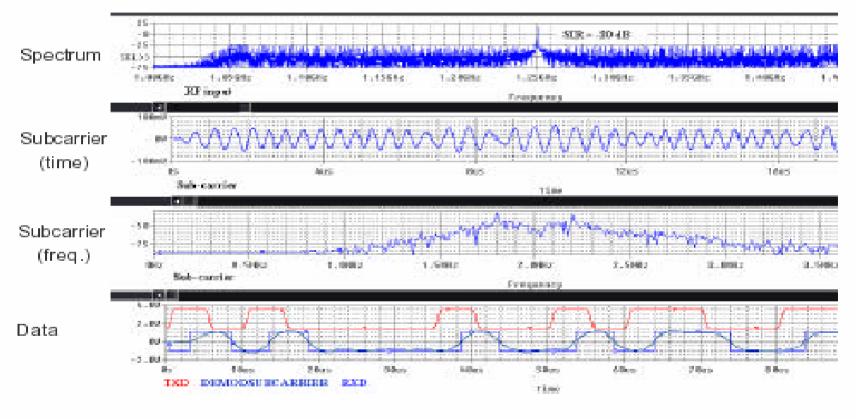
### ■ FCC ruling permits UWB spectrum overlay




- FCC ruling issued 2/14/2002 after ~4 years of study & public debate
- FCC believes current ruling is conservative

### Theoretical Data Rates over Range




UWB shows significant throughput potential at short range

### Performance Analysis with encoding rules



### EXAMPLE UWB LINK ANALYSIS

 $SIR = 20 \ dB!$ 



 $R = 200 \text{ kbps}, \Delta f_{sub} = 2 \text{ MHz}, \Delta f = 200 \text{ MHz}, \beta = \Delta f / \Delta f_{sub} = 100 (20 \text{ dB})$ 

### So why is UWB so Interesting?

- 7.5 Ghz of "free spectrum" in the U.S.
  FCC recently legalized UWB for commercial use
  Spectrum allocation overlays existing users, but its allowed power level is very low to minimize interference
- Very high data rates possible
  500 Mbps can be achieved at distances of 10 feet under current regulations
- "Moore's Law Radio"
  - □ Data rate scales with the shorter pulse widths made possible with ever faster CMOS circuits
- Simple CMOS transmitters at very low power
  Suitable for battery-operated devices
  Low power is CMOS friendly

### Ultra Wideband Characteristics

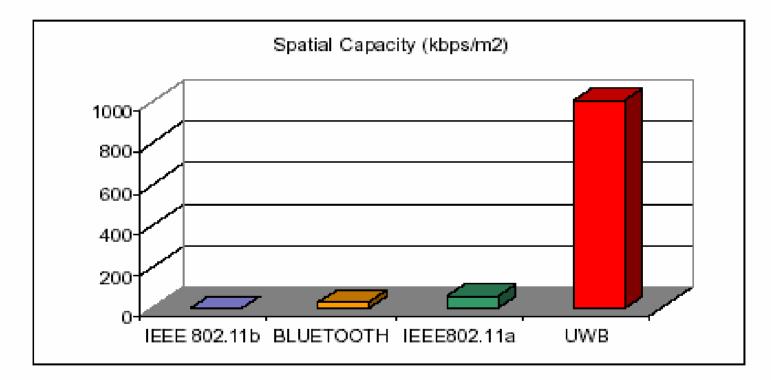
- Extremely low transmission energy (less than 1mW)
- Very high bandwidth within short range (200Mbps within 10m)
- Extremely difficult to intercept

– Short pulse excitation generates wideband spectra – low energy densities

- Low energy density also minimizes interference to other services

- Multipath immunity
- Commonality of signal generation and processing architectures
- Radar
  - Inherent high precision sub-centimeter ranging
  - Wideband excitation for detection of complex, low RCS targets

### Ultra Wideband Characteristics

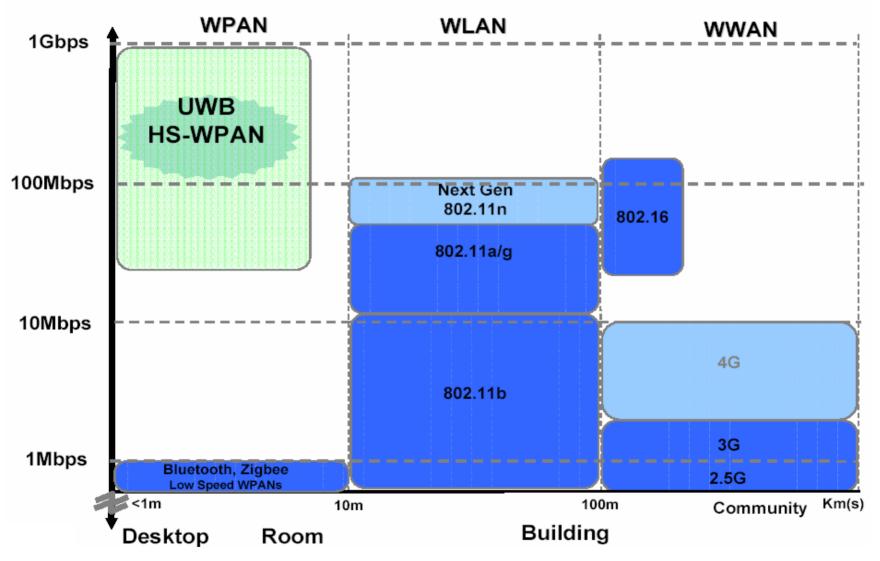

### Geolocation/Positioning

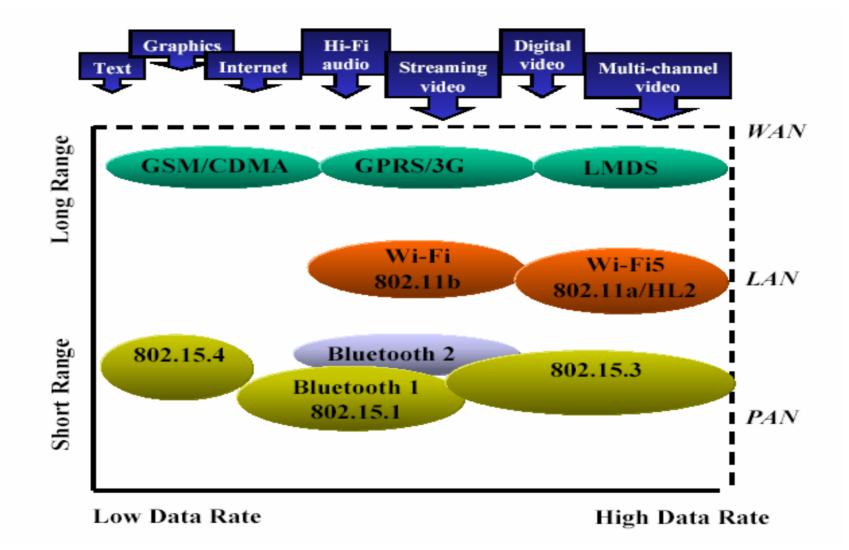
- Sub-centimeter resolution using pulse leading edge detection
- passes through building blocks, walls, etc. (LOS not required)
- Low Cost
  - Nearly "all-digital" architecture
  - ideal for microminiaturization into a chipset
- Frequency diversity with minimal hardware modifications

### UWB Advantages

- Capacity
  - possibility of achieving high throughput
- Low power & Low cost
  - □ Can directly modulate a baseband pulse
  - □ Can be made nearly all digital
  - □ High capacity with lower Tx power levels
- Fading robustness
  - □ Wideband nature of the signal reduces time varying amplitude fluctuations (?)
  - □ Relatively immune to multipath cancellation effects
    - Path delay ~ 1ns > pulse duration
    - But don't we build RAKE just to rebuild the multipath thing ?
    - What about ISI ?
- Position location capability
  - Developed first as radar technology (!)
- Flexibility
  - □ Can dynamically trade-off throughput for distance

### COMPARISON OF WIRELESS TECHNOLOGIES: CAPACITY





Sources: Scientific American, Time Domain, MSSI

# **UWB for WPAN**

### Where does UWB fit?

Bandwidth





# WPAN requirements

Essential requirements include:

- Wireless without line-of-sight limitations
- Low power consumption
- Optimized for power management and QoS'
- Ad-hoc' networking support
- Multi-device networks
- Cross-network interference tolerance
- Small size and easy integration into variety of devices
- Low cost & complexity

# IEEE802.15 project (WPAN)

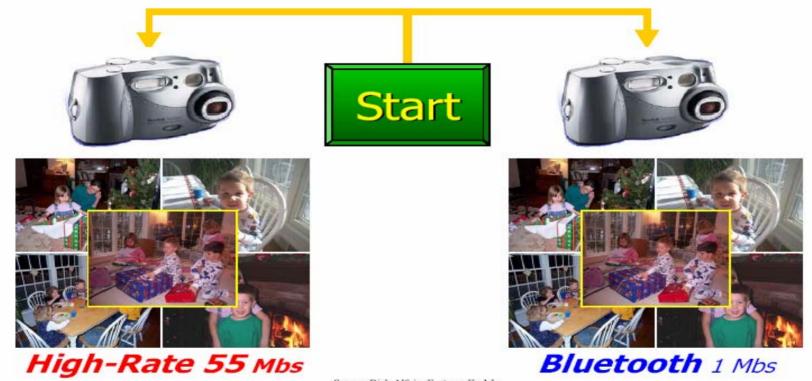
| Project                              | Data Rate                                                                        | Range                                          | Configuration                                    | Other Features                              |  |
|--------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------|--|
| 802.15.1<br>(Bluetooth)              | 1 Mbps                                                                           | 10M (class 3)<br>100M (class 1)                | 8 active device<br>Piconet/<br>Scatternet        | Authentication,<br>Encryption, Voice        |  |
| 802.15.3<br>High Rate                | 22, 33, 44,<br>55 Mbps                                                           | 30-50M                                         | 256 active device<br>Piconet/Mesh                | QoS, Fast Join<br>Multi-Media               |  |
| 802.15.4<br>Low Rate                 | up to<br>250Kbps                                                                 | 10M nominal<br>1M-100M<br>based on<br>settings | Master/Slave<br>(256 Devices or<br>more)<br>Mesh | Battery Life:<br>multi-month to<br>infinite |  |
| 802.15.SG3a<br>Alternate<br>15.3 PHY | >100Mbps                                                                         | 10M nominal                                    | 256 active device<br>Piconet/Mesh                |                                             |  |
| 802.15.2<br>Coexistence              | Develop a Coexistence Model and Mechanisms<br>Document as a Recommended Practice |                                                |                                                  |                                             |  |

# Summary of WPAN standards

| Characteristic             | IEEE<br>802.15.4                                                                   | Bluetooth           | IEEE<br>802.11b                 | IEEE<br>802.11g+          | IEEE<br>802.11a                                      | IEEE<br>802.15.3+                                                  | UWB+<br>HDR                                                                                        |
|----------------------------|------------------------------------------------------------------------------------|---------------------|---------------------------------|---------------------------|------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Standard<br>version/status | IEEE approved                                                                      | V 1.1<br>(Low-Rate) | IEEE approved                   | Draft                     | IEEE approved                                        | Draft                                                              | Draft IEEE<br>802.15.3a                                                                            |
| Max. data rate             | 250 kb/s; 40 kb/s;<br>20 kb/s                                                      | 1 Mb/s              | 11 Mb/s                         | 54 Mb/s                   | 24 Mb/s<br>mandatory;<br>54 Mb/s optional            | 11 Mb/s<br>(QPSK) – 55 Mb/s<br>(64 QAM)<br>mandatory: ≥<br>22 Mb/s | 110 Mb/s (10m)<br>200 Mb/s (4m)<br>(mandatory)<br>(higher data-<br>rate might<br>optionally apply) |
| Max. distance              | 30 m                                                                               | 10 m                | 100 m                           | 100 m                     | 50 m                                                 | 10 m                                                               | 10 m                                                                                               |
| Frequency<br>allocation    | 868–868.6 MHz;<br>(ISM EU)<br>902–928 MHz;<br>(ISM US)<br>2400–2483.5 MHz<br>(ISM) | 2.4 GHz (ISM)       | 2.4 GHz (ISM)                   | 2.4 GHz (ISM)             | 5-GHz UNII<br>(5.15 – 5.35 +<br>5.725 –5.825)<br>GHz | 2.4 GHz (ISM)<br>2.4–2.4835 GHZ                                    | 3.1–10.6 GHz                                                                                       |
| Channel<br>bandwidth       | 0.3 MHz; 0.6 MHz<br>(2 MHz spacing);<br>2 MHz (5 MHz<br>spacing)                   | 1 MHz               | 25 MHz                          | 25 MHz                    | 20 MHz                                               | 15 MHz                                                             | Min. 500 MHz<br>Max. 7.5 GHz                                                                       |
| Number of RF<br>channels   | 1; 10; 16                                                                          | 79                  | 3                               | 3                         | 12 U.S.<br>8 <u>EU</u><br>4 Japan                    | 5                                                                  | (1–15)                                                                                             |
| Modulation<br>type         | BPSK; OQPSK                                                                        | GFSK                | 11Mbaud<br>QPSK (CCK<br>coding) | OFDM 64 +<br>CCK (legacy) | Cofdm BPSK,<br>QPSK, 16 QAM                          | DQPSK<br>16/32/64<br>QAM                                           | BPSK, QPSK                                                                                         |
| Spreading                  | DS-SS                                                                              | DS-FH               | CCK                             | OFDM                      | OFDM                                                 | —                                                                  | (Multiband)                                                                                        |

| Maximum<br>allowed RF<br>power                  | US 1W +6dB<br>antenna gain; (FCC<br>15.247);<br>EU<br>(868 MHz)<br>ERC70-03E: 25mW<br>if duty cycle < 1%<br>in 1 hour;<br>(2400 MHz)<br>ETSI 300-328:<br>20 mW <sup>1</sup><br>(2 MHz channels @<br>10 mW/MHz)<br>Japan<br>10 mW/MHz | 0 dBm<br>20 dBm                                   | <u>US</u><br>30 dBm (PC<br>needed for<br>emissions><br>20 dBm)<br><u>EU</u><br>20 dBm<br>J <u>apan</u><br>10 dBm | <u>US</u> 30 dBm<br>(PC needed<br>for emissions<br>>20 dBm)<br><u>EU</u><br>20 dBm<br>Japan<br>10 dBm | 50 mW; 250 mW;<br>1-watt<br>(depending on<br>the used channels<br>within the band) | <u>US</u><br>50 mV/m (@3m,<br>1 MHz res.<br>bandwidth)<br>(47 CFR 15.249)<br><u>EU</u><br>100 mW <sup>2</sup> EIRP<br>(ETS 300–328)<br><u>Jap</u><br>10 mW (ARIB<br>STD-T66) | –41.3 dBm/MHz<br>(max. average<br>EIRP over entire<br>band = 0.562<br>mW)<br>(FCC First Report<br>and Order;<br>Part 15 ET<br>Docket 98-153) |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Required<br>receiver<br>sensitivity<br>Approx # | -85 dBm PER<1%                                                                                                                                                                                                                       | –70 dBm BER<br>< 10 <sup>-3</sup><br>BT (~ 40–100 | 76 dBm<br>BER<10 <sup>-5</sup><br>FER = 8×10 <sup>-2</sup>                                                       | From76 dBm<br>(22 Mb/s) to<br>74 dBm<br>(33 Mb/s)<br>FER = 8×10-2<br>~4BT                             | From –82 dBm<br>(6 Mb/s) to –65<br>dBm (54 Mb/s)<br>BER < 10 <sup>-5</sup><br>~6BT | From –82 dBm<br>(DQPSK) to –68<br>dBm (64 QAM)                                                                                                                               |                                                                                                                                              |
| Approx #<br>PHY power<br>consumption            |                                                                                                                                                                                                                                      | mW)                                               | ~401                                                                                                             | ~401                                                                                                  | ~081                                                                               | _                                                                                                                                                                            | (~-23BT)                                                                                                                                     |
| Approx cost#                                    | ~0.5 BT                                                                                                                                                                                                                              | BT (~ 5\$)                                        | ~4BT                                                                                                             | ~4BT                                                                                                  | ~5BT                                                                               | —                                                                                                                                                                            | (~1–2BT)                                                                                                                                     |

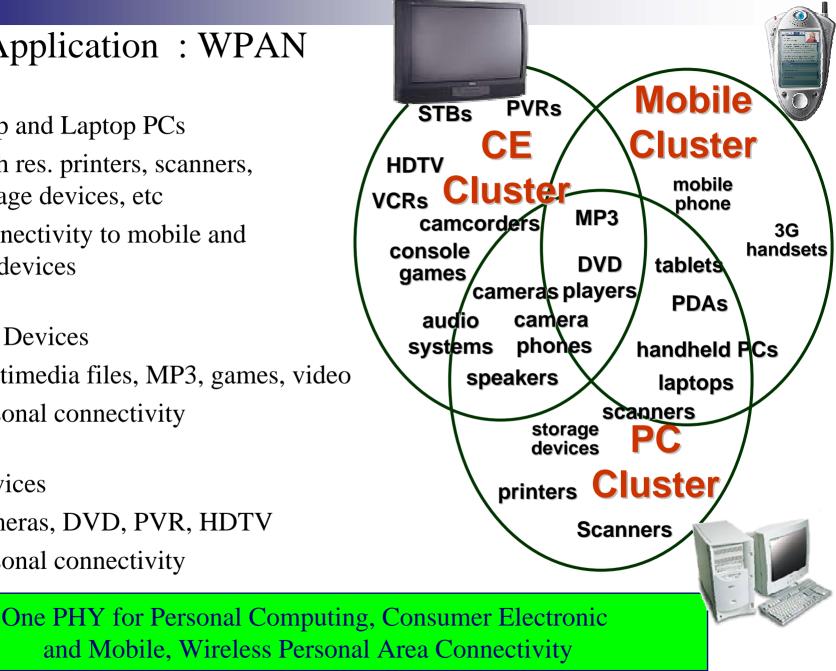
• Acronyms used: BT = reference Bluetooth device, CCK = complementary code keying (CCK), orthogonal frequency-division multiplexing (OFDM), COFDM = coded OFDM, ISM = industrial, scientific, medical, PC = power control, PSDU = PHY service data unit (payload), UNII = unlicensed national information infrastructure.


+ These specifications are currently (April 2003) under drafting. All parameters mentioned are speculative, in particular some of those referring to IEEE 802.15.3a, which is in its early stages of discussion.

# Parameters referring to power consumption and cost can vary dramatically from design to design; these numbers are only to be considered as rough indications.

<sup>1</sup> IEEE 802.15.4 EU general equipment plans to use 1–10 mW. <sup>2</sup> IEEE 802.15.3 EU general equipment plans to use 8 dBm.

. Summary of characteristics of some leading WLAN/WPAN standards.


## Example: transfer rate



Source: Rick Alfvin, Eastman Kodak

### **UWB** Application : WPAN

- Desktop and Laptop PCs
  - □ High res. printers, scanners, storage devices, etc
  - □ Connectivity to mobile and **CE** devices
- Mobile Devices
  - □ Multimedia files, MP3, games, video
  - □ Personal connectivity
- CE Devices
  - □ Cameras, DVD, PVR, HDTV
  - Personal connectivity



# HW

- Define UWB, features, and benefits.
- Describe the potential application of UWB for WPAN

# Reference

- Porcino, D., Hirt, W., Ultra-Wideband Radio Technology: Potential and Challenges Ahead, Communications Magazine, IEEE, Volume: 41, Issue: 7, July 2003 Pages:66 - 74.
- Peter Hulbert and Malcolm Streeton, ULTRA WIDE BAND an overview, Roke Manor Research. Available:

http://www.roke.co.uk/download/articles/UWB\_An\_Overview\_LPRA2003.pdf

- Nicolas Demassieux, An Overview of Ultra Wide Band Indoor Channel Measurements and Modeling, European Communication Research Labs, Motorola Labs, May 15, 2002. Available: <u>http://www.ctr.kcl.ac.uk/Pages/4GForum/2002/CD/P1/P-6.ppt</u>.
- Ultra Wideband Systems, Roke Manor Research. Available: <u>http://www.roke.co.uk/uwb/default.asp</u>.
- Young Man Kim, Ultra Wide Band (UWB) Technology and Applications, NEST group The Ohio State University, July 10, 2003. Available: <u>http://www.cse.ohio-state.edu/siefast/presentations/ultra-wide-band-kimyoung-2003/ultra-wide-band-kimyoung-2003.ppt#270,17,UWB Test/Evaluation Kit</u>.
- Johann Chiang, "A War to End All Wars" Between UWB WPAN Systems. Available: <u>http://www.ece.utexas.edu/wncg/ee381v/student\_report/Johann.pdf</u>.
- Robert Szewczyk, UWB: Technology and implications for sensor networks, NEST group The Ohio State University, July 27, 2004. Available: <u>http://www.cs.berkeley.edu/~binetude/NEST/UWB.ppt#283,4,UWB Signals</u>.

# Reference

- Ebrahim Saberinia, Ahmed H. Tewfiq, Multi-user UWB-OFDM Communications, Communications, Computers and signal Processing, 2003. PACRIM. 2003 IEEE Pacific Rim Conference on , Volume: 1 , 28-30 Aug. 2003 Pages:127 - 130 vol.1.
- David G. Leeper, PhD, Singapore Ultrawideband Programme, Consumer Electronics, Intel Communications Group, May 24, 2004. Available:

http://www.ida.gov.sg/idaweb/doc/download/I2887/UWB,\_OFDM\_and\_Cognitive\_Radio.pdf.

- Safwat, A.M, Ultra-Wideband (UWB) Technology: Enabling high-speed wireless personal area networks, Intel. Available: <u>http://www.intel.com/technology/ultrawideband/downloads/Ultra-Wideband.pdf</u>.
- Zoubir Irahhauten, Homayoun Nikookar, and Gerard J. M. Janssen, An Overview of Ultra Wide Band Indoor Channel Measurements and Modeling, Wireless Communications, Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], Volume: 14, Issue: 8, Aug. 2004 Pages:386 – 388.
- UWB Development, Institute of Microelectronics (IME), Singapore UWB Community. Available: <u>http://uwb.tech.org.sg/devResIme.html</u>.
- J. Farserotu, UWB FOR WSN, CSEM, Neuchatel, 14 October 2003. Available: <u>http://www.mics.org/MV2003-Present/Ma14/UWB-Farserotu.pdf</u>.
- M. A. Rashid, J. Y. Khan and J. Wall, Bluetooth-Based Wireless Personal Area Network for Multimedia Communication, Electronic Design, Test and Applications, 2002. Proceedings. The First IEEE International Workshop on, 29-31 Jan. 2002 Pages:47 – 51.
- Robert F. Heile, WPAN Application Space, IEEE 802.15. Available: <u>http://csi.usc.edu/INTEL-USC/presentations/Heile.pdf</u>

# Thank you!

### Q&A's