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ABSTRACT

With space-time codes (STC) the same information is trans-
mitted in appropriate manner simultaneously from different
transmit antennas to obtain transmit diversity. The main
idea of transmit diversity is that if a message is lost in a
channel with probability p and we can transmit replicas of
the message over n independent such channels, the loss
probability becomes pn. Using diversity, more reliability is
given to the symbols which allows employing higher order
constellation resulting in higher throughput.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) communication tech-
nology has received significant recent attention due to the
rapid development of high-speed broadband wireless com-
munication systems employing multiple transmit and receive
antennas. Information theoretic results show that MIMO
systems can offer significant capacity gains over traditional
single-input single-output channels.

This increase in capacity is enabled by the fact that in
rich scattering wireless environments, the signals from each
individual transmitter appear highly uncorrelated at each of
the receive antennas. When conveyed through uncorrelated
channels between the transmitter and the receiver, the sig-
nals corresponding to each of the individual transmit anten-
nas have attained different spatial signatures. The receiver
can exploit these differences in spatial signatures to separate
the signals originated from different transmit antennas.

In Space-Time Coding (STC) systems , the same infor-
mation symbol stream is transmitted from different transmit
antennas in appropriate manner to obtain transmit diversity.

This paper is organized as follows. In Section 2 diver-
sity concepts are introduced. In Section 3,4 and 5 space-
time coding techniques are discussed. Error probability is
introduced in section 6. Differential STBC (DSTBC) is pre-
sented in section 7. STC for OFDM are included in the sec-
tion 8. Finally conclusions and references.

2. DIVERSITY

Depending on surrounding environment, a transmitted ra-
dio signal propagates through several different paths. This
phenomenon is often referred as multipath propagation [3].
The signal received by the receiver antenna consists of the
superposition of various multipaths. If there is Non-Line
of Sight components between the transmitter and receiver ,
the attenuation coefficients corresponding to different paths
are assumed to be independent and identically distributed.
In which case the central limit theorem applies and the re-
sulting path can be modeled as a complex Gaussian random
variable. In this case, the channel is said to be Rayleigh.

Signal power in a wireless system fluctuates. When this
signal power drops significantly, the channel is said to be
in fade. Diversity is used in wireless channels to combat
the fading. Receive diversity and transmit diversity mitigate
fading and significantly improve link quality. The receive
antennas see independently faded versions of the same sig-
nals. The receiver combines these signals so that the resul-
tant signal exhibits considerably reduced amplitude fading.

In most scattering environments, antenna diversity is a
practical, effective and, hence, a widely applied technique
for reducing the effect of multipath fading . The classical
approach is to use multiple antennas at the receiver and per-
form combining or selection and switching in order to im-
prove the quality of the received signal. The major problem
with using the receive diversity approach is the cost, size,
and power of the remote units. The use of multiple anten-
nas and radio frequency (RF) chains makes the remote units
larger and more expensive. As a result, diversity techniques
have almost exclusively been applied to base stations to im-
prove their reception quality. A base station often serves
hundreds to thousands of remote units. It is therefore more
economical to add equipment to base stations rather than the
remote units. For this reason, transmit diversity schemes are
very attractive.

In recent years it has been realized that many of the ben-
efits as well as substantial amount of the performance gain
of receive diversity can be reproduced by using multiple an-
tennas at the transmitter to achieve transmit diversity.



The use of transmit diversity at the base stations in a cel-
lular o wireless local area network has atracted an special in-
terest; this is so primarily because a performance increase is
possible without adding extra antennas, power consumption
or significant complexity to the mobile. Also, the cost of
the extra transmit antenna at the base station can be shared
among all users.

3. SPACE TIME CODING

An effective and practical way to approaching the capac-
ity of MIMO wireless channels is to employ Space-Time
Coding (STC). STC is a coding technique designed to be
used with multiple transmit antennas. Coding is performed
in both spatial and temporal domains to introduce corre-
lation between signals transmitted for various antennas at
various time periods [2]. Space-Time coding can achieve
transmit diversity and power gain over spatially uncoded
systems without sacrificing the bandwidth. There several
approaches in coding structures, Space-Time Block Coding
(STBC), Space Time Trellis Coding (STTC), Differential
Space-Time Block Coding (DSTBC) that will be presented
in the next sections.

3.1. STC - An introductory example

• One transmit antenna and two receive antennas

Considering a system with two receive antennas and
one transmit antenna. If the fading is frequency flat,
the twor received signals can be written as

y1 = h1s + n1

y2 = h2s + n2 (1)

where h1 and h2 are the channel gains, s is the trans-
mitted signal and n1 ,n2 are mutually uncorrelated
noise terms. By the following linear combination, it
is possible to recover s

ŝ = w1 ∗ y1 + w2 ∗ y2

= (w∗
1h1 + w∗

2h2) + w∗
1n1 + w∗

2n2 (2)

where w1 and w2 are the weights. The SNR in ŝ is
given by

SNR =
|w∗

1h1 + w∗
2h2|2

(|w1|2 + |w2|2)σ2
E[|s|2]

where σ2 is the power noise. We can choose w1 and
w2 proportional to h1 and h2 that maximizes the SNR.
The resulting SNR is proportional to (|h1|2 + |h2|2)
If the fading is Rayleigh, then (|h1|2 + |h2|2) is χ dis-
tributed, and we can show that the error probability of
detecting s decay as SNR−2

a in high SNR values. In

single antenna case, the error probability of detecting
s decay as SNR−1. The diversity order of the system
is the slope of the BER curved plotted versus the av-
erage SNR. In our example diversity gain equal to 2
was reached.

• Two transmit antennas and one receive antenna At a
given time instant, the symbol s pre-weighted with
w1 and w2 is transmitted. The received sample can
be written

y = h1w1s + h2w2s + n (3)

where n is the noise sample. The SNR in y is given
by

SNR =
|h1w1 + h2w2|2

σ2
E[|s|2] (4)

If w1 and w2are fixed , the SNR has the same sta-
tistical distribution as |h1|2 ( or |h2|2). Therefore,
if the weights are not allowed to depend on h1 and
h2 it is impossible to achieve diversity of order two.
However, if we assume that the transmitter knows the
channel, and w1 and w2 are chosen to be functions of
h1 and h2, it is possible to achieve an error probabil-
ity that behaves SNR−2.

We have seen that without channel knowledge at the
transmitter, diversity can not be achieved. However, if
two time intervals for the transmission is allowed, we
can achieve diversity of order two easily. At Time=t,
antenna 1 is used and at Time=t+1 antenna 2 is used.

In this case, the received samples signal at different
time instants are

y1 = h1s + n1

y2 = h2s + n2 (5)

Equation 5 is of the same form than equation 1, so
that the error associated with this method is equal to
that for the previous case ( 1× 2 system). In this case
diversity gain equal to 2 is achieved but a sacrifice in
information rate is necessary.

Space Time coding is concerned with the harder and in-
teresting topic, How maximize the transmitted information
rate at the same time that minimize the error probability.

4. ALAMOUTI CODE

Figure 1 shows the baseband representation of the Alamouti
two branch transmit diversity scheme [1]. The scheme uses
two transmit antennas and one receive antenna and may be
defined by the following three functions



• The encoding and transmission sequence of informa-
tion

At a given symbol period, two signals are simultane-
ously transmitted from the two antennas. The signal
transmitted from antenna zero is denoted by S0 and
from antenna one by S1 . During the next symbol pe-
riod signal S∗

1 is transmitted from antenna zero, and
signal S∗

0 is transmitted from antenna one. The en-
coding, however, may also be done in space and fre-
quency. Instead of two adjacent symbol periods, two
adjacent carriers may be used (spacefrequency cod-
ing). The 2 × 2 space time code is written in matrix
form as

S =
[

s0 s1

−s∗1 s∗0

]
(6)

The channel at time t may be modeled by a complex
multiplicative distortion h0(t) for transmit antenna
zero and h0(t) for transmit antenna one. Assuming
that fading is constant across two consecutive sym-
bols, we can write

h0(t) = h0(t + T ) = α0e
jθ0

h1(t) = h1(t + T ) = α1e
jθ1 (7)

The received signal can be written

r0 = r(t) = h0s0 + h1s1 + n0

r1 = r(t + T ) = −h0s
∗
1 + h1s

∗
0 + n1 (8)

where r0 and r1 are the received signals at time t and
t + T .

• The combining scheme at the receiver

The combiner builds the following two combined sig-
nals that are sent to the maximum likelihood detector

ŝ0 = h∗
0r0 + h1r

∗
1

ŝ1 = h∗
1r0 − h0r

∗
1 (9)

The decision statistics can be expressed as

s̃0 = (α2
0 + α2

1)s0 + h∗
0n0 + h1n

∗
1 (10)

s̃1 = (α2
0 + α2

1)s1 − h0n
∗
1 + h∗

1n0 (11)

• The decision rule for maximum likelihood detection

These combined signals are then sent to the maximum
likelihood detector.

Fig. 1. Alamouti transceiver structure

Fig. 2. BER Alamouti code compared with MRCC system

The resulting combined signals in 11 are equivalent
to that obtained from two-branch MRRC. The only
difference is phase rotations on the noise components
which do not degrade the effective SNR.

Therefore, the resulting diversity order from the Alam-
outi transmit diversity scheme with one receiver is
equal to that of two-branch MRRC.

Figure 2 shows the performance of Alamouti code com-
pared with a MRCC system in a Rayleigh fading channel
using BPSK modulation. From the figure, we can conclude
that the performance of Alamouti code with two transmit-
ters and a single receiver is 3 dB worse than two-branch
MRRC. The 3-dB penalty is incurred because is assumed
that each transmit antenna radiates half the energy in order
to ensure the same total radiated power as with one transmit
antenna. If each transmit antenna was to radiate the same
energy as the single transmit antenna for MRRC, the per-
formance would be identical



5. GENERALIZED STBC

The Alamouti scheme works only with two transmit anten-
nas. This scheme was later generalized in to an arbitrary
number of transmit antennas. Similarly to the Alamouti
code, the general STBC is defined by a code matrix with or-
thogonal columns. Just like in the Alamouti scheme, a sim-
ple linear receiver is also obtained due to the orthogonality
of the columns of the code matrix. In general, an STBC is
defined by a (p×nT ) matrix G. The entries of the matrix G
are linear (possibly complex) combinations of the variables
x1; x2; . . . ; xk (representing symbols). The columns of the
matrix represent antennas and the rows time slots [2].

Therefore, p time slots are needed to transmit k sym-
bols, resulting in a code rate R = k/p.

It is of special interest code matrices achieving the max-
imum transmission rate permitted by the STC theory, i.e, R
= 1 symbol/channel use. For a fixed nT , among the code
matrices that achieve the maximum rate, we will be inter-
ested in those with minimum values of p or equivalently,
minimum number of time slots needed to transmit a block.
These code matrices are referred as delay optimal and they
are interesting because they minimize the memory require-
ments at the transmitter and at the receiver [5].

The construction of STBC using the generalized com-
plex orthogonal for a rate equal to 1/2 give the following
matrix:

G3 =



s1 s2 s3

−s2 s1 s4

−s3 s4 s1

−s4 −s3 s2

s∗1 s∗2 s∗3
−s∗2 s∗1 s∗4
−s∗3 s∗4 s∗1
−s∗4 −s∗3 s∗2


(12)

G3 code is designed for 3 transmit antennas with a code
rate R = 1/2 and G4 is designed for 4 antennas with the
same code rate.

G4 =



s1 s2 s3 s4

−s2 s1 s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1

s∗1 s∗2 s∗3 s∗4
−s∗2 s∗1 s∗4 s∗3
−s∗3 s∗4 s∗1 −s∗2
−s∗4 −s∗3 s∗2 s∗1


(13)

Compared with Alamouti code, the STBC G3 and G4

have two disadvantages: The bandwidth efficiency is re-
duced by a factor of two. The number of time slots across
which the channel is required to have a constant fading en-
velope is increased by a factor of four. Figure 3 shows the
BER performance of G3,G4 and G2 (Alamouti). 16 QAM
modulation is used for G3 and G4 and 4 DPSK modulation
for Alamouti in order to have the same data rate (2 bits/sec)
[6]. BER results for 1 bit/sec is shown in figure 4.

6. ERROR PROBABILITY ON SLOW FADING
CHANNELS

On slow fading channels, the fading coefficients within each
frame are constant. So we can ignore the subscript of the
fading coefficients

h1
j,i = h2

j,i = . . . = hL
j,i = hj,i

i = 1, 2, . . . , nT , i = j, 2, . . . , nR (14)

Let us define a codeword difference matrix B(X, X̂) as

B =


x1

1 − x̂1
1 x1

2 − x̂1
2 . . . x1

L − x̂1
L

x2
1 − x̂2

1 x2
2 − x̂2

2 . . . x2
L − x̂2

L
...

...
. . .

...
xnT

1 − x̂nT
1 xnT

2 − x̂nT
2 . . . xnT

L − x̂nT
L

(15)

(16)

We can construct an nT × xnT codeword distance matrix
A(X, X̂) defined as

A(X, X̂) = B((X, X̂).BH(X, X̂)

Exist a unitary matrix V and a real diagonal matrix ∆ such
that

V A(X, X̂)V H = ∆

where the rows of V are the eigenvectors of A(X, X̂),
forming a complete orthogonal basis of an N-dimensional
vector space. The diagonal elements of ∆ are the eigenval-
ues λ1 > 0, i = 0, 1, . . . , nT of A(X, X̂).

The modified Euclidean distance between the two space-
times codeword matrices X and X̂ can be written as

d2
h(X, X̂) =

nR∑
j=1

hjA(X, X̂)hH
j

=
nR∑
j=1

nT∑
i=1

λi|βj,i|2 (17)

where βj,i = hj .vi and . denotes the inner product. In the
case of Rayleigh fading and high SNR, the upper bound of
the error probability is [2]

P (X, X̂) ≤
(

r∏
i=1

λi

)−nR

(
Es

4N0
)−rnR (18)

where r denotes the rank of the matrix A(X, X̂) and λi are
the nonzero eigenvalues of matrix A(X, X̂). The exponent
of the SNR term, rnR is called diversity order and the prod-
uct of the eigenvalues is called coding gain.

When a space time code is designed, the following cri-
teria can be considered:



Fig. 3. BER G3,G4 and G2 codes - 2 bits/sec

• Maximize the minimum rank r of the matrix A(X, X̂)
over all pairs of distinct codewords.

• Maximizes the minimum product
∏r

i=1 λi of matrix
A(X, X̂) along the pairs of distinct codewords with
the minimum rank.

7. DIFFERENTIAL STBC

When the channel changes slowly compared to the symbol
rate, the transmitter can send pilot sequences that enable
the receiver to estimate the channel accurately. However, in
some situations, such as high mobility channels or channel
fading conditions changing rapidly, it may be difficult to es-
timate the channel with good precision. For such situations,
it is useful to develop space time codes that do not requires
channel estimates either at the receiver or at the transmitter
[7].

7.1. Encoding Algorithm

The transmitter begins the transmission with sending arbi-
trary symbols s1 and s2 at time 1 and symbols −s∗2 and
s∗1 at time 2 unknown to the receiver. These two transmis-
sions do not convey any information. A mapping function
M is defined The transmitter subsequently encodes the rest
of the data in an inductive manner. Suppose that s2t−1 and
s2t are sent, respectively, from transmit antennas one and
two at time 2t − 1, and that −s∗2t and s∗2t−1 , are sent re-
spectively, from antennas one and two at time 2t . At time
2t + 1, a block of 2b bits B2t+1 arrives at the encoder.
The transmitter uses the mapping function M and computes
M(B2t+1) = A(B2t+1) + B(B2t+1) Then it computes

(s2t+1s2t+2) = A(B2t−1)(s2t−1s2t) + B(B2t+1)(−s∗2ts2t−1)

Fig. 4. BER G3,G4 and G2 codes - 1 bits/sec

The transmitter then sends s2t+1 and s2t+2, respectively,
from transmit antennas one and two at time 2t + 1 and
−s∗2t+2 and s∗2t+1 from antennas one and two at time 2t+2.
This process is inductively repeated until the end of the
frame. Block diagram of the differential encoder and de-
coder is shown in Figure 5.

Example Consider a BPSK constellation of two signal
points 1/

√
2 and−1/

√
2. The coefficient vector set is given

by
V = [(1, 0), (0, 1), (−1, 0), (0,−1)] (19)

At each encoding operation, a block of 2m = 2 bits arrives
at the encoder and is mapped into V . The mapping function
can be computed using

M(00) = (1, 0)
M(10) = (0, 1)
M(01) = (0,−1)
M(11) = (−1, 0)

Assuming that at time 2t − 1, x2t−1 = −1/
√

2 and x2t =
−1/

√
2 are sent from antennas one and two, respectively,

and at time 2t, −x∗
2t = 1/

√
2 and x∗

2t−1 = −1/
√

2 are sent
from antennas one and two. If the two information bits at
the encoder input at time 2t + 1 are 11, according to the
mapping function M(11) = (−1, 0), the coefficients used
to compute the transmitted signals for the next two trans-
missions are R1 = −1 and R2 = 0. Thus, we have

x2t+1, x2t+2 = −1(−1/
√

2,−1/
√

2) + 0(+1/
√

2,−1/
√

2)

= −1(+1/
√

2, +1/
√

2) (20)

At time 2t + 1, x2t+1 = +1/
√

2 and x2t+2 = −1/
√

2
are sent from antennas one and two and −x∗

2t+2 = −1/
√

2
and x∗

2t+1 = +1/
√

2 at time 2t + 2.



In [2], details related with decoding process can be found.
The DSTBC detection scheme is 3 dB worse than that of the
transmit diversity scheme of employs coherent detection at
high SNR [7]. However, it is an excellent option in high
mobility environments like cellular systems.

8. OFDM AND ST CODES

Space-time (ST) coding has been proved effective in com-
bating fading, and enhancing data rates. Exploiting the pres-
ence of spatial diversity offered by multiple transmit and/or
receive antennas, ST coding relies on simultaneous coding
across space and time to achieve diversity gain without nec-
essarily sacrificing bandwidth. Two typical examples of ST
codes are ST trellis codes and ST block codes .

Multipath diversity becomes available when frequency
selectivity is present, which is the typical situation for broad-
band wireless channels. Multiantenna transmissions over
frequency-selective fading channels can potentially provide
a maximum diversity gain that is multiplicative in the num-
ber of transmit antennas, receive antennas, and the channel
length. Inspired by this result, a number of coding schemes
have been proposed recently to exploit multipath diversity.
Because they offer low-complexity equalization decoding
and facilitate the support of multirate services, multicarrier
transmissions are typically adopted by those schemes.

Diversity techniques designed for single carrier (SC) mod-
ulation are easily extended to OFDM modulation with the
time index for SC modulation replaced by the tone index
in OFDM. For example, considering the Alamouti scheme
which requires that the channel remains constant over con-
secutive symbols periods. In the OFDM context, this trans-
lates to the channel remaining constant over consecutive
tones, i.e, H(k) = H(k + 1) [4]. Consider two data sym-
bols, s1 and s2, to be transmitted over antennas 1 and 2
respectively on tone k, and s∗

2 and s∗1 are transmitted over
antennas 1 and 2 respectively on tone k +1 within the same
OFDM symbol.

The receiver detects the transmitted symbols from the
received signal on the two tones using the Alamouti detec-
tion techniques. As in SC modulation, the effective channel
is orthogonalized irrespective of the channel realization and
the vector detection problem collapses into scalar detection
problems with the effective input-output relation for sym-
bols is given by

yi =

√
Es

2
‖H [k]‖2

f si + n1, i = 1, 2 (21)

where ni is a noise component with variance ‖H [k]‖2
f N0.

Assuming that the 2MR elements of H [k] undergo inde-
pendent fading, the Alamouti scheme extracts 2MR order
diversity, just as SC modulation.

The use of consecutive tones is not strictly necessary,
any pair of tones can be used as long as the associated chan-
nel are equal.
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Fig. 5. Differential Encoder - Decoder

The technique can be generalized to extract spatial di-
versity over a large number of antennas by using STBC
techniques. In this case, we need a block size T ≥ MT

and the channel must be identical over the T tones.

9. CONCLUSIONS

As conclusion of this paper we can mention:

• Alamouti code is the best option when 2 Transmis-
sion antennas is considered.

• Low complexity receiver is a good characteristic for
STBC.

• DSTBC can be considered in high mobility channels.

10. REFERENCES

[1] Simon Haykin and Michael Moher, Modern Wireless Commu-
nications.

[2] B. Vucetic and J. Yuan, Space-Time Coding, John Wiley,
2003.

[3] P. Stoica and E. Larson, Space-Time Block Coding for Wire-
less Communications, Cambridge University Press, 2003

[4] A. Paulraj, R. Nabar, D. , Introduction to Space-Time Wire-
less Communications, Cambridge University Press, 2003

[5] D. Gespert, et. Al. ,”From theory to practice: An overview of
MIMO Space-Time Coded Wireless Systems”, IEEE JSAC,
Vol. 21, April 2003

[6] Tarokh, V.; Jafarkhani, H., ”A differential detection scheme
for transmit diversity”’, IEEE JSAC ,Vol. 18 ,July 2000 .

[7] Tarokh, V.; Jafarkhani, H.; Calderbank, A.R.; ”Space-time
block coding for wireless communications: performance re-
sults”, IEEE JSAC ,Vol. 17 ,March 1999


