802.11a OFDM PHY

Coding and Interleaving

FERNANDO GREGORIO Signal Processing Laboratory

> S-72.333 Postgraduate Course Fernando Gregorio

Outline

- □ Introduction
- Convolutional codes
- □ Puncturing codes
- Decoding
- □ Weighting metric
- □ Interleaver
- □ Simulations
- □ Conclusions
- □ References
- □ Homework

Fernando Gregorio

Introduction

Shannon's Noisy Channel Coding Theorem

"With every channel we can associate a "channel capacity" C (bits/sec). There exist such error control codes that information can be transmitted at a rate below C (bits/sec) with an arbitrarily low bit error rate."

Error Control Coding

- The function of the encoder is to introduce redundancy in the binary information sequence.
- Such redundancy is used in the receiver to overcome the effects of noise, interference and (fading) encountered when transmitting the signal through the channel.

23.3.2004

IEEE 802.11 Coding and Interleaving

S-72.333 Postgraduate Course

Fernando Gregorio

Convolutional Codes

□ Characteristics

- The output is a function of not only the input bit but also the previous inputs.
- Parameters
 - n is the number of output bits.
 - k is the number of input bits.
 - m is the number of memory registers.
 - \square k / n code rate.
 - Constraint Length L= k (m-1)

Fernando Gregorio

Convolutional Codes

23.3.2004

IEEE 802.11 Coding and Interleaving

> S-72.333 Postgraduate Course Fernando Gregorio

Convolutional codes

□ Free distance

- The minimum free distance of the code determine the performance of the convolutional code.
- The minimum free distance is the minimum Hamming distance between all pairs of code words.

□ Coding Gain

 Reduction of required SNR to achieve a certain bit error rate (BER) in AWGN channel.

$$C_{gain} = 10\log_{10}(CR.d_{free})$$

No. of carriers

 $bits_{carrier} N_{carrier} CR$

 T_{OFDM}

Symbol Duration

Fernando Gregorio

Code Rate

Convolutional codes

□ IEEE802.11a

- M=6 , g₁=133₈ g₂=177₈
- Code rate =1/2
- Modulation : BPSK, QPSK, 16QAM, 64QAM
- Example
 - Data Rate = 12 Mbps
 - BPSK, no coding
 - QPSK , coding ½ code rate.
- IEEE 802.11a
 - Data Rate = 6 , 9, 12, 18, 24, 36, 48, 54 Mbps

23.3.2004

IEEE 802.11 Coding and Interleaving

Bits per carrier

Rate = -

S-72.333 Postgraduate Course Fernando Gregorio

Puncturing Codes

Different Data Rate

- Different size constellation.
- Different convolutional encoders.
- Puncturing encoders
 - Some of the outputs bits are not transmitted.
 - □ The bit selection rule is changed to

 $CR = \frac{1}{CR_{or}.PR}$

Puncturing Rate =2/3 Code rate=3/4

Puncturing Rate =3/4 Code rate=2/3

Fernando Gregorio

To Decoder

Puncturing Codes

Code rates	Punctured Free Distance	Punctured Coding Gain	Optimum Free Distance	Optimum Coding Gain
1⁄2	-	-	10	10.0 dB
2/3	6	6.0 dB	7	6.7 dB
3/4	5	5.7	6	6.5

23.3.2004

IEEE 802.11 Coding and Interleaving

B_{1.2}

 B_{22}

0

Punctured Coded data

Punctured

Matrix

data

 $y = (B_{11}B_{12}, XB_{22}, B_{33}X, \dots, B_{L1}X)$

B_{1.2}

B_{1.2} X ---- X

Decoding

S-72.333 Postgraduate Course

□ The principle of the Viterbi Algorithm is:

- Examine the received and compute the metric for each path and make a decision based in this metric.
- All paths are followed until to paths converge on one node.
- The path with the lower metric is kept.

23.	3	2004

IEEE 802.11 Coding and Interleaving

> S-72.333 Postgraduate Course Fernando Gregorio

Decoding

- Viterbi decoding
 - Maximum likelihood estimator
 - Hard decoding
 - The received symbols at the output of the demodulator are quantized into two levels; zero and one, and fed to the decoder. The Hamming distance is calculated.
 - Soft decoding
 - The received symbols at the output of the demodulator are quantized into more than two levels or the unquantized value (analog value) is used and fed to the decoder. The Euclidian distance is calculated.

Hard decoding

Fernando Gregorio

1.65 (utput (channe 14 - 0	el (SN	R=2dE	i)= [1] 77 04	08 2.	78 0.	36 -1.	48 0.2	33 -1. 34 1 -5	10 -0.9	93 1/	55 1.8	0.61
1.05 -	1.99)	14 10		000 0		00 -21	00 0.	05 0.	12 01	A 1.0	0 -1.0	0 -1.0	2 0.08	0.11
Metric	accur	nulate	d hard	decor	áng ta	ble								
State	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	1	2	3	3	3	4	4	5	3	3	4	4	5
1	0	4	2	2	2	3	3	4	2	5	4	5	4	4
2	2	1	2	3	2	2	4	4	5	3	5	3		
3	0	2	1	1	2	3	2	2	4	4	4	5		
													-	
Survivi State	ng pre	deces	ssor st	ates t	able (h	ard de	codin	3)	8	9	10	11	12	13
Survivi State Ø	ng pre	deces 1	ssor st	ates t 3 0	able (h	ard de 5	codin 6 0	3) 7	8	9	10	11	12	13
Survivi State Ø	ng pre	deces 1 0 2	ssor st	ates to 3	able (h 4 0 3	ard de 5 0 2	codin 6 0 3	3) 7 1 2	8 0 3	9 1 2	10 0 2	11 1 3	12 0 3	13 5 4
Survivi State 0 1 2	ng pre	1 0 2 0	z 0 3 0	ates to 3	able (h 4 0 3	ard de 5 0 2	codin 6 0 3 0	2 7 1 2 1	8 0 3 0	9 1 2 1	10 0 2 0	11 1 3 0	12 0 3 0	13 5 4 5

23.3.2004

IEEE 802.11 Coding and Interleaving

Fernando Gregorio

Interleaver

Fernando Gregorio

Metric weighting

- Data conveyed by carriers having a high SNR are a priori more reliable than those conveyed by carriers having low SNR.
 - Extra *a priori* information is usually known as *channel-state information* (CSI).
- The Viterbi metrics for each bit should be weighted according to the SNR of the carrier by which it traveled. The bits from the nulled carriers are effectively flagged as having "no confidence".

23.3.2004

IEEE 802.11 Coding and Interleaving

S-72.333 Postgraduate Course

Fernando Gregorio

Simulations

S-72.333 Postgraduate Course Fernando Gregorio **Simulations** Coding BER 12 Mbps (EEE802.11a, Gaussian Channel 10 QPSK with coding BPSK no coding QPSK - code rate = 1/210 BPSK - No coding 10 10 10 5 SNR 4 6 8 2.9 dB 23.3.2004 IEEE 802.11 Coding and Interleaving S-72.333 Postgraduate Course Fernando Gregorio

BER 6 Maps (EEEB02 11 a. Fading channel

terredente infrantsi Breettides et efferte de rec

6

10 11 12

frendræterine frendersterierte

Simulations

Data Rate = 6 Mbps

Fernando Gregorio

Simulations

□ Weighting

QPSK – code rate=1/2

12 Mbps

$$p_n = \left|H_k\right|^2 \left|\hat{b}_n - b_n\right|^2$$

23.3.2004

IEEE 802.11 Coding and Interleaving

> S-72.333 Postgraduate Course Fernando Gregorio

Conclusions

- Coding and interleaving techniques was studied and their performance was evaluated in a WLAN (IEEE 802.11 a) environment.
- This work show the great importance of this techniques to improve the quality of service in a IEEE802.11 service.

References

- Heiskala J. and Terry J., OFDM Wireless LANs: A theoretical and Practical Guide, Sams Publishing, 2002.
- Glover I. and Grant P., Digital Communication, Prentice Hall, 2004.

23.3.2004

IEEE 802.11 Coding and Interleaving

> S-72.333 Postgraduate Course Fernando Gregorio

Homework

- In IEEE802.11 only Frequency Interleaver is applied. Why?
- Justify