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Abstract—In wireless communications, error control is an 

important feature for compensating transmission impairments 
such as interference and multipath fading which cause high bit 
error rates in the received data. Forward Error Correction 
(FEC) is one of the data link layer protocols for error control. 
This paper gives an overeview to error control coding employed 
in FEC, particularly block codes and convolutional codes. 
Finally, some consideration of code selection will be discussed. 
 

I. INTRODUCTION 

 
he trend towards portable personal computers or 
workstations are rising quickly in the recent years. 

WLAN networks are becoming increasingly popular. Users of 
the network are demanding for ever higher quality of service 
(QoS) and multi-variety services (not only data, but also 
packet voice, video, etc.). Unlike wireline systems, wireless 
and mobile environment is more prone to transmission 
impairments due to multipath propagation and movement of 
the mobile stations.  
 
Particularly, in WLAN systems which employ 
omnidirectional antennae in order to obtain good coverage, 
the transmitted signal power is not concentrated to the 
intended user. On top of that, the transmitted signal is more 
scattered and multipath effect becomes more pronouns. 
Interference is also an issue in WLAN environment due to its 
unlicensed frequency spectrum.  
 
With the aim of providing high QoS and reliable transmission 
in this hostile wireless environment with restricted received 
signal level, development of appropriate physical layer, data 
link layer and network layer protocols is important. In this 
paper, we are interested particularly in error control protocols 
in data link layer. There are largely two categories of error 
control mechanisms, namely FEC and Automatic Repeat 
Request (ARQ). The focus of the paper will be on error 
control coding employed in FEC.  
 
Shannon’s theory on channel coding states that, given a 
channel there exist error control codes such that information 

 
 

can be transmitted across the channel at rate less than the 
channel capacity with arbitrarily low error rate. Since the 
publication of this theory more than 40 years ago, control 
coding theorists have been working towards discovering these 
codes. Among the error control codes found since then are 
some block codes such as BCH and Reed-Solomon codes and 
convolutional codes which will be discussed in this paper. 
 
The paper is organized as follows. In Section II the concept of 
FEC will be introduced. Section III discusses first block codes 
in general and then some particular cyclic codes, namely 
BCH codes and Reed-Solomon codes. Convolutional code is 
presented in section IV and finally section V discusses some 
considerations of code selection and some methods to 
enhanced error control schemes. 
 

II. FORWARD ERROR CORRECTION 

 
Forward error correction schemes add redundant bits to the 
original transmitted frame in order to obtain known structures 
or patterns in the final transmitted frame. Figure 1 depicts the 
FEC operation where the encoder maps the k-bit transmitted 
data into an n-bit codeword and decoding and error correction 
to obtain the original data.  
 

 
 

Figure 1: Operation of FEC based on block coding 
 

With these known patterns, the decoder at the receiver will be 
able to detect and possibly correct the erroneous bits in the 
received frames. To be more precise, there are four possible 
outcomes at the decoder output:- 
 

Block Error Correction Codes and Convolution 
Codes 
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i. Received frame is identical to the transmitted 
frame. The FEC decoder produces the original 
transmitted data block as output. 

ii. The received frame is different from the 
transmitted frame but has a certain error pattern 
know to the decoder. The FEC decoder will be 
able to detect and correct these erroneous bits 
and produces the original transmitted block as 
output. 

iii. The received frame is different from the 
transmitted frame. The error pattern of the 
received frame can be detected but cannot be 
corrected by the FEC decoder. The FEC decoder 
reports an uncorrectable error. 

iv. The received frame contains a typically rare 
pattern that the decoder cannot detect any 
errors. The FEC decoder produces a k-bit block 
that is different from the original transmitted 
block as output. 

 
These scenarios are depicted in Figure 2. 
 

 
 

Figure 2: FEC decoding scenarios  
 
 

III. BLOCK CODES 

 
Block code schemes involves dividing the input data bit 
stream into block of k-bit streams and then mapping each k-
bit block into n-bit block called codeword, where n k>  in 
the encoding process. ( )n k-  check bits are added to each k-

bit block. The ratio ( )/n k k-  is called the redundancy of 

the code and the ratio /k n  is called the code rate.  

 
Before we go further, some important terms shall be defined 
to ensure clarity in the discussion to follow.  
 

i) Hamming distance ( )1 2
d ,c c  between two binary 

code words 
1

c  and 
2

c  is the number of bits the 

two code words disagree.  
ii) For an error correcting code that consists of 

codewords 
1 2
, , ..., s

é ù
ë ûc c c , the minimum distance 

is defined as  

( )min min ,
¹

é ù= ê úë ûi j
i j

d d c c . 

 
A code is capable of correcting up to t bits of errors if the 
code satisfy 

min
2 1d t³ + . Putting this in another way, the 

maximum number of guaranteed correctable errors per 
codeword is  
 

min
1

2

d
t

ê ú-
ê ú=
ê úë û

, 

 
where ëûx  stands for the largest integer not exceeding x. For 
error detection, the code that satisfies 

min
1t d= -  can detect 

up to t bits of errors in a block. 
 
In general, the encoding operation of linear block codes can 
be represented with multiplying the generator matrix with the 
data block to be transmitted as  
 

=c mG , 
 

where  

0 1
...

k
m m mé ù= ë ûm  and 
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G is a matrix consisting of k rows and n column.  Since an 
( ),n k  linear block code has 2k  valid codewords, it is a 

subspace of dimension k. Consequently, the row of G must be 
linearly independent, i.e. they must be the basis for the ( ),n k  

code. The basis vectors for the code are not unique, and hence 
G is not unique.  
 
A linear block code is said to be a systematic code if the first 
k bits of the code words are the data bits and the following 
n k-  bits are the parity check bits. Any generator matrix G 
can be reduced by row operations to the systematic form as 
follow. 
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At the receiver, the decoding operation of a linear block code 
involves a parity check matrix H that is used to detect and 
possibly correct bit errors. Associate with any ( ),n k  linear 

code, there is a dual code of dimension n k- . The generator 
matrix for the dual code is the parity check matrix H for the 
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linear block code. The rows of H spans a subspace of 
dimension n k- , which is the null space of G. For 
systematic codes, H can be deduce from G as   
 

[ ]' | -= - n kH P I . 

 
To prove the claim that the generator matrix for the dual code 
is the parity check matrix, we denote the received data block 
as 
 

,

= +

= +

y c e

mG e
 

 
where e is the error vector. 

 
Since H is the null space of G, the matrices are orthogonal 
and ' =GH 0 . Then 
 

( )' '

' '

' .

= +

= +

=

yH mG e H

mGH eH

eH

 

 
'=S eH  is known as the syndrome of the error pattern. Note 

that the syndrome is purely a function of the error pattern and 
not the transmitted code word. Hence H must be the dual 
space of G. 
 
The parity check results in =S 0  when no error detected, 
which is equivalent to =e 0 . When errors are detected, S is 
nonzero and indicates the positions of the error bits. Hence 
the error bits can be corrected. In the cases of the number of 
errors exceeding the error correcting capacity of the code but 
within the detection capability, the syndrome indicates 
uncorrectable errors. There exist some rare error patterns that 
the syndrome reports no error. 
 
 

A. Cyclic codes 

 
An ( , )n k  linear block code C is said to be a cyclic code if 

the cyclic shift of a codeword is another codeword, i.e. for 

( )0 1 2 1
, , ..., ,

n n
c c c c

- -
= Îc C , the following is also a valid 

codeword ( )01 1 2
' , , ...,

n n
c c c c

- -
= Îc C . 

 
Cyclic codes are important practical error correcting codes 
due to their property and structure. One of the many reasons 
is that the general class of cyclic codes can be efficiently 
and easily implemented using linear feedback shift register 
based encoders and decoders.  
 
The cyclical nature of these codes provides them with more 
structure that helps ease the encoding process. This 
structure allows us to associate a code with polynomials. For 

instance, we represent a four digit binary message, [ ]1010  

as 21 x+ . The encoding process involves a polynomial 
generator ( )g x  and the data block to be transmitted.  
 
For a given (n, k) cyclic code, the generator polynomial has 
certain properties related to n and k. The generator 
polynomial ( )g x  must be a factors of 1nx +  and of degree 
n k- . This procedure is best explained with an example. 
 
Example 1: Encoding process 
 
We consider a (7, 4) cyclic code for encoding a data block 

[ ]1010m = . To find the generator polynomial ( )g x  for an 

( ) ( ), 7, 4n k =  code, we first factorize the polynomial 
7 1x +  and find the factor with degree 3n k- = . 

 

( )3 2g( ) 1x x x= + +  

 
To encode the data block [ ]1010m = , we multiply its 

corresponding polynomial ( )
2 1m x x= +  with ( )g x . 

  
( ) ( ) ( )

3 3 2

6 5 4

g

( )( 1)

.

c x m x x

x x x x

x x x x

=

= + + +

= + + +

 

 

Thus the data block is encoded to the codeword  
[ ]1110010c = .  

Another approach for encoding is without using polynomial 
function is to construct the generator matrix G. This 
approach allows us to encode systematic codes where the 
first k bits of the code are the transmitted data follow by n-k 
bits of parity check bits. 

The generator matrix is an (n x k) matrix with its rows 
formed by the cyclic version of the generator polynomial. 

 

1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1

 
 
 =
 
 
  

G . 

The systematic form can be obtained by performing row 
operation. We obtain  

1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

 
 
 =
 
 
  

G . 
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In the case of the example ,=c mG and the codeword 
obtained is 1010011=c , which the first 4 bits are the 
transmitted data m. 

 

Example 2: Decoding process 

Continuing from the systematic code, we assume that the 
code word is received with 1 error bit at position 4 i.e. 

1011011.=r  

The parity check matrix H of the can be obtain from 

[ ]' | -= - n kH P I . 

1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

é ù
ê ú
ê ú= ê ú
ê úê úë û

H . 

The syndrome is then S = rH  ́ which yields S = 011. By 
examining the H matrix, S is equal to column 4 which 
indicates a bit error in position 4 i.e. e 0001000= . We 
decode the data by adding the received sequence and the 
error pattern modulo 2 and drop the last 3 bits. 

( )ˆ e mod 2

1010011

1010.

= +

=

Þ =

r r

m

 

The H matrix carries some information of the code’s error 
correction capability. The minimum distance of the code is 
equal to the minimum number of linearly combine column 
to produce all zeros. In our example, the code’s minimum 
distance is 3 and therefore it’s a single error correcting code 
but can detect 2 errors. 

 

B. Bose-Chaudhuri-Hocqueghem (BCH) codes 

 
BCH codes include a large class of cyclic codes. These 
codes employ binary as well as nonbinary alphabets. Reed-
Solomon codes are a special class of nonbinary BCH codes 
which will be discussed later. Often expressed as an ( ), ,n k t  

BCH codes, the parameters are as follows. 
 

min

2 1

2 1,

mn

n k mt

d t

= -

- £

= +

 

 
where m is any positive integer 3³ , i.e. 7n ³ . 
 
These parameters provide larger selection of block lengths, 
code rates, and error correcting capabilities. Table 1 shows 

some examples of the parameters of binary BCH code. 
Observed that for a given pair of (n, k) for block length 
greater 7, there are some flexibility for the parameter t. 
System designers can adjust these parameters to suit the 
system requirements.  
 
 

n k t g(x) (octal form)  

7 4 1 13 
15 11 1 23 
 7 2 721 
 5 3 2467 
63 57 1 103 
 51 2 12471 
 45 3 1701317 
 39 4 166623567 
 36 5 1033500423 
127 120 1 211 
 113 2 41567 
 106 3 11554743 
 99 4 3447023271 
 92 5 624730022327 
255 247 1 435 
 239 2 267543 
 199 7 7633031270420722341 
 179 10 22624710717340332416300455 

Table 1: Generator polynomials (in octal form) for BCH codes for 
various block lengths, data lengths and corresponding error 

correcting capabilities 
 

For nonbinary BCH codes, q-ary alphabets are employed 
where q is any power of any given prime number. The block 
length of nonbinary BCH codes is given by 1sn q= - . For 
t-error correcting, the number of check bit needed is 

2- £n k st . 
 

C. Reed-Solomon (RS) codes 

 
Reed-Solomon codes are a special subclass of nonbinary 
BCH codes with parameter s=1. Consequently, the 
parameters for an (n, k, t) RS-codes are as follows. 

 

min

1

2

2 1.

n q

n k t

d t

= -

- £

= +

 

  
RS codes are known to have optimal distance properties. 
For fixed number of check bits, RS codes provide higher 
error correcting capability compared to other block codes. 
A property related to the extra redundancy provided by 
nonbinary alphabets, 2 information symbols can be added 
to the length n RS code (resulting in length n+2) without 
reducing the minimum distance of the code. These codes 
are known as Extended-RS codes.  
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RS codes are effective in correcting burst errors and 
excellent for application with large set of input symbols. 
One famous practical application of RS codes is the 
Compact Disc (CD) error control system. 

 

IV. CONVOLUTIONAL CODES 

 
Convolutional encoders are encoders with memory. The 
outputs of the encoder not only depend on the current input 
bits but also certain amount of the previous bits. An (n, k, m) 
convolutional code encodes k input bits into n output bits. m 
is the memory of the decoder. The encoding involves the k 
current input bits and m previous input bits.  
 
Unlike block codes, convolutional codes do not divide the bit 
stream into blocks. However, associated with the memory 
length of the encoder is the constraint length K = m+1 of the 
encoder. This parameter represents the k-tuple stages in the 
encoding shift registers. In practice, n and k are small and K 
is varied to control the redundancy of the code. 
 
 

A. Convolutional Encoding 

 
Figure 3 shows a ½ rate (2, 1, 2) convolutional encoder. The 
two outputs are serialized using a multiplexer, alternating y1 
and y2 to the output line. The two code generators, upper and 
lower branch, can be represented with polynomial 
respectively as follow.  
 

2
1

2
2

G (D) = 1+ D+ D

G (D) = 1+ D .
 

 

 
Figure 3:  

½ rate (2, 1, 2) convolutional encoder 
 
 

Example 3: Convolutional encoding 
 
Consider the ½-rate encoder in Figure 3. Assume the initial 
content of the registers is zero, we wish to encode the bit 
sequence 101. In order to shift the whole sequence through 
the registers, 2 zeros are appended to the end of the sequence 

in order to flush the registers.  
 
The code generator functions take the corresponding values in 
the shift register and input at each stage. Table 2 shows the 
encoding process that produces the output bits in column 3.  
 
 
 

Input Register contents y1 y2 

1 00 11 

0 10 10 

1 01 00 

0 10 10 

0 01 11 

Table 2 
Convolutional encoder:  

Input, registers content and outputs 
 

B. Trellis diagram 

 
Trellis diagram is one of the many ways to represent a 
covolutional encoder. Figure 4 shows the trellis diagram of 
the encoder in Figure 3. 
 

 
Figure 4 

Trellis diagram 
 

The trellis diagram represents all possible transition from the 
states in one time instant to the next. In figure 4, the solid 
blue arrows represent transitions caused by an input bit 0 
while the dotted black arrows indicate transition caused by 
input bit 1. The binary digits on each arrow represent the 
encoder output of that transition known as branch code.  
 
The information on the trellis diagram is useful especially in 
Viterbi decoding algorithm. Convolutional decoding consists 
of hard-decision decoding and soft-decision decoding. An 
example of hard decision decoding which eliminate unlikely 
paths in the trellis based on the Hamming distance between 
the branch code and the received sequence. 
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C. Convolutional decoding 

 
Convolutional decoding is based on the Maximum Likelihood 
(ML) concept. Given a received sequence Z, the decoder 
chooses a sequence from all possible transmitted sequence 
that maximize the following likelihood function. 
 

( ) ( ){ }( )

( ') ( )

all 
| max | .=

m

m m

X
P Z X P Z X  

 
If the input sequences are equally likely, the ML decoder is an 
optimal decoder as it minimizes the error probability. 
 
Viterbi decoding algorithm is one of the classical 
convolutional decoders. It performs ML decoding but reduces 
the computational complexity by exploiting the structure of 
the code trellis. The algorithm calculates a measure of 
similarity (eg. Hamming distance) between the received 
signal and all the trellis branch codes that is entering each 
state at any given instant ti. The trellis path that is less 
unlikely or less similar to the received signal will be 
eliminated at each transition instant. By early elimination of 
unlikely paths, the decoding complexity is reduced. 
 
 
Example 4: Convolutional decoding with Viterbi algorithm 
 
In this example, we consider the output sequence from the 
encoder in Figure 3 that encode input data m = 11011 to 
output sequence y = 11 01 01 00 01. Suppose that the 
received sequence Z = 11 01 01 10 01 is the corrupted version 
of y. 
 

 
Figure 5 

Viterbi decoding (4 transition instances) 
 

The path metric is calculated based on the Hamming distance 
of the branch code and the received sequence. The numbers 
circled next to each node in Figure 5 indicate the path 
metrics. 
 
As can be seen from Figure 5, at transition instant t4, which is 

the constraint length of the code, there are two trellis paths 
entering each node (state). The paths that result in higher 
path metrics are eliminated.  
 
Figure 6 shows the following transition into the 6-th 
transition instance with all unlikely paths eliminated. Observe 
that a single path has not been obtained in this example. 
Normally, the trellis path ends in state 00 corresponding to 
the flushed registers. However, in our example, by choosing 
the path that carries the lowest path metric i.e. 1, we can read 
the decoded data from the path (solid arrow = 0; dotted arrow 
=1).  
 

 
Figure 6 

Viterbi decoding  
(6 transition instances with eliminated paths) 

 
The decoded data is 11011 which tally with the input data m 
in spite of the error in Z. 
 

V. CODE SELECTION CONSIDERATIONS 

 
When selecting a coding scheme for an application, often 
tradeoffs among performance, complexity and amount of 
redundancy can not be avoided. The selection criteria depend 
on the application’s emphasis on coding gain, throughput and 
amount of processing delay that it can tolerate.  
 
Many different methods involving the combination of 
different coding schemes and/or other error control schemes 
have been proposed in literatures. These methods overcome 
the shortcomings of individual coding schemes.  
 
Examples are concatenated coding, interleaving and code 
puncturing which reduce the code length but maintain the 
coding gain or code performance. Hybrid ARQ combines 
error correcting coding and ARQ to improve throughput. For 
varying channel condition, long codes tend to introduce too 
much redundancy when the channel condition is good. 
Adaptive coding schemes are proposed to increase code 
efficiency in varying channel condition. 
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