Error Control Block Codes and Convolutional Codes

23 March 2004

Mei Yen Cheong mycheong@cc.hut.fi

Content

1. Introduction
2. Forward error control (FEC)
3. Linear Block Codes

- Generic block codes
- BCH codes
- Reed-Solomon codes

4. Convolutional Codes

- Convolutional encoding
- Viterbi decoding algorithm

5. Discussion
6. References

Introduction (1)

- Why error control?
- Multipath fading
- Interference (unlicensed spectrum)
- Low received signal level (omnidirectional antenna)
- High bit error rate in received data.
\Rightarrow Error control important for WLAN.

Introduction (2)

Objective: Error control to compensate transmission impairment in order to increase quality of transmission.

- Datalink layer and transport layer (TCP) protocols
- Approaches for error control
- Error detection - CRC, parity check
- Forward error correction (FEC) - channel coding
- Automatic Repeat Request (ARQ) - Stop-and-wait, Go-back-N, etc..

Forward Error Control

- FEC scheme adds redundant bits to transmitted data to form codeword known as error correcting codes.
- FEC scenarios

- Error correction code can be implemented with block codes or convolutional codes

Block Codes (1)

- Block error coding scheme divides the transmitted bit stream into nonoverlapping blocks of length k.
- Each k-bit block is map into an n-bit block called codeword.

Block Codes (2)

- The ratio k / n is called the code rate is a measure of how much excess bandwidth is required to transmit the data at the same data rate as without the code.
- The minimum distance $d_{\text {min }}$ of a code is minimum Hamming distance between all vectors the code.

$$
d_{\min }=\min _{i \neq j}\left[d\left(c_{i}, c_{j}\right)\right]
$$

- Tells the minimum error correcting capability of the code
- Maximum number of guaranteed correctable errors/code word

$$
t=\left\lfloor\left.\frac{d_{\min }-1}{2} \right\rvert\,, \text { where }\lfloor x\rfloor \text { is the largest integer } \leq x\right.
$$

Generic Block Codes Encoder (1)

Encoding of an (n, k) block code

- Multiplying data block with the generator matrix $c=m G$.

- The rows of \mathbf{G} contains the basis of the (n, k) code.
- Only 2^{k} out of the 2^{n} codes generated are valid codes.

Generic Block Codes Encoder (2)

- Nonsystematic codes
- n-k check bits in random positions
- Systematic codes
- First k bits contain data
- Last n-k bits contain the check bits
- Easier decoding

$$
\begin{aligned}
\mathbf{G} & =\left[\begin{array}{ccccc|cccc}
1 & 0 & 0 & \cdots & 0 & p_{11} & p_{12} & \cdots & p_{1 n-k} \\
0 & 1 & 0 & \cdots & 0 & p_{21} & p_{22} & \cdots & p_{2 n-k} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & p_{k 1} & p_{k 2} & \cdots & p_{k n-k}
\end{array}\right] \\
& =\left[\mathbf{I}_{k} \mid \mathbf{P}\right] .
\end{aligned}
$$

Generic Block Codes Decoder (1)

- Decoding involves multiplying the n-bit received block with the parity check matrix \mathbf{H}.
- Let the received block be

$$
\begin{aligned}
\mathbf{y} & =\mathbf{c}+\mathbf{e} \\
& =\mathbf{m} \mathbf{G}+\mathbf{e} .
\end{aligned}
$$

Then

Syndrome of the error pattern
$\Rightarrow \mathbf{H}$ (with dimension $n-k)$ constitute the null space of the code l.e. $\mathrm{GH}^{\prime}=\mathbf{0}$.

Generic Block Codes Decoder (2)

- All-zero syndrome vector $\mathbf{S}=\mathbf{0}$ indicates no bit error has occured $(\mathbf{e}=\mathbf{0})$.
- Nonzero syndrome vector indicates errors have occured
- indicate the error positions if the number of errors in the block do not exceed t, error correction can be done
- \mathbf{H} is the generator matrix of the dual code of \mathbf{G}.
- For systematic codes, \mathbf{H} can be deduced from \mathbf{G} as

$$
\mathbf{H}=\left[-\mathbf{P}^{\prime} \mid \mathbf{I}_{n-k}\right] .
$$

Some well-known block codes

- Hamming codes
- Golay codes
- Hamadard codes
$\left.\begin{array}{ll}\text { - BCH codes } \\ \text { - Reed Solomon Codes }\end{array}\right\}$ Cyclic codes

Cyclic codes (1)

- A block code is said to be cyclic if and only if the cyclic shift of a codeword is another codeword.

$$
\begin{aligned}
& \mathbf{c}_{1}=\left(c_{1}, c_{2}, \ldots, c_{n-1}, c_{n}\right) \in \mathrm{C} \\
& \mathbf{c}_{2}=\left(c_{n}, c_{1}, \ldots, c_{n-2}, c_{n-1}\right) \in \mathrm{C}
\end{aligned}
$$

- The cyclical structure of the codes allows us to associate a code with polynomials
- Can be efficiently implemented using linear shift-register based codecs.

Cyclic Codes (2)

- The generator polynomial $g(x)$ of an (n, k) cyclic codes is a polynomial of degree $n-k$ that divides $x^{n}+1$.
- G can be obtained by arranging cyclically shifted version of $g(x)$ into an $n \times k$ matrix as follow.

$$
\mathbf{G}=\left[\begin{array}{ccccccc}
g_{1} & g_{2} & \cdots & g_{n-k} & 0 & \cdots & 0 \\
0 & g_{1} & g_{2} & \cdots & g_{n-k} & 0 & \cdots \\
\vdots & & \ddots & & & \ddots & \\
0 & \cdots & 0 & g_{1} & g_{2} & \cdots & g_{n-k}
\end{array}\right]
$$

\Rightarrow can be reduced by row operation to systematic form

Cyclic Codes (3)

Example 1:

- Find the generator matrix of a $(7,4)$ cyclic code. Encode 1010.
- Factorization: $x^{7}+1=(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)$
- $g(x)$ is of degree $n-k=3$, choose $g(x)=\left(x^{3}+x+1\right)$

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \tag{1011}\\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \xrightarrow{\text { rowoperation }}\left[\begin{array}{llll:lll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- Encode $\mathbf{m}=[1010] \Rightarrow \quad \boldsymbol{c}=\mathbf{m G}$

$$
c=1010011
$$

Cyclic Codes (4)

Example 2

- Find the parity check matrix \mathbf{H} of the code. Find the syndrome and decode $\mathbf{y}=1011011$.
- \mathbf{H} can be deduced from $\mathbf{G} \quad \mathbf{H}=\left[-\mathbf{P}^{\prime} \mid \mathbf{I}_{n-k}\right]$.

$$
\left.\mathbf{H}=\left[\begin{array}{llll:lll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \Leftarrow \begin{array}{l}
d_{\min }=3 \\
\Rightarrow t=1
\end{array}\right\} \begin{aligned}
& \text { Number of linearly } \\
& \text { independent } \\
& \text { columns }
\end{aligned}
$$

- Syndrome: $\mathbf{S}=\mathbf{y H}^{\prime}=011 \rightleftharpoons$ Error pattern, $e=0001000$
- Decoded data: $\hat{\mathbf{m}}=y+e$

$$
\hat{\mathbf{m}}=1010011
$$

BCH codes (1)

- BCH codes consist of cyclic codes which employ binary and nonbinary alphabets.
- BCH codes are 3-parameter codes expressed as ($n, k, t) \mathrm{BCH}$ code.
- For any positive integer $m \geq 3$; $\quad(n \geq 7)$,

Block length:	$n=2^{m}-1$
Check bits:	$n-k \leq m t$
Minimum distance:	$d_{\min }=2 t+1$

BCH Codes (2)

- The parameter set provide large selection of block lengths, code rates and error correcting capabilities.
- Nonbinary BCH takes q-ary symbols where q is any power of a prime number $p ; \Rightarrow q=p^{z}$.
- For any positive integer s, q-ary BCH code is of length $n=q^{s}-1$.
- To correct up to t errors, the number of parity check bits needed is $n-k \leq 2 s t$.

Note: Table of binary BCH codes parameters in Appendix

Performance of BCH codes

- BCH codes on channel with random errors [4]

- As expected, as the code overhead increases, the performance improves.

Reed-Solomon Codes (1)

- Reed-Solomon (RS) codes are a special subclass of nonbinary BCH codes with parameter $s=1 \Rightarrow n=q-1$.
- The parameters of an (n, k, t) RS code are as follows.

$$
\begin{array}{ll}
\hline \text { Block length: } & n=q-1 \\
\text { Check bits: } & n-k \leq 2 t \\
\text { Minimum distance: } & d_{\min }=2 t+1 \\
\hline
\end{array}
$$

- RS codes have optimal distance properties
- the extra reduncdancy provided by nonbinary alphabets.
- For fixed number of check bits, RS codes provide optimal error correcting capability.

Reed-Solomon Codes (2)

- Practical RS codes take alphabets of $q=2^{m}$.
- Special feature: Extended RS code with length $n+2$
- 2 information symbols can be added to the length n RS code without reducing the minimum distance.
- Effective in burst-error correction.
- Efficient for channels where the set of input symbols is large.

Convolutional codes

- Convolutional codes are encoded with encoders with memory
- Encoder outputs at an instant not only on the current inputs but also some past inputs
- An (n, k, m) convolutional code
- generates n encoded bits for every k data bits
- m is the memory of the the encoder
- Code rate is the ratio of number input bits to the corresponding number of output bits k / n.

Convolutional Encoding

Example 3:

- A $1 / 2$-rate $(2,1,2)$ binary convolutional encoder. Encode $x=101$.
- $G_{1}(D)=1+D+D^{2}$

$$
\mathrm{G}_{2}(\mathrm{D})=1+\mathrm{D}^{2}
$$

Input	Register contents	$\mathrm{y}_{1} \mathrm{y}_{2}$
1	00	11
0	10	10
1	01	00
0	10	10
0	01	11

$\Rightarrow y=1110001011$

Convolutional Decoding (1)

- Convolutional decoding is based on Maximum Likelihood (ML) concept. It's an optimum decoder.

$$
P\left(Z \mid X^{\left(m^{\prime}\right)}\right)=\max _{\text {all } X^{(m)}}\left\{P\left(Z \mid X^{(m)}\right)\right\}
$$

- Viterbi algorithm performs reduced complexity ML decoding
- Eliminate least likely trellis path at each transition stage
- Reduced decoding complexity with early rejection if unlikely paths
- Code trellis structure is exploited in viterbi decoding.

Convolutional Decoding (2)

Trellis diagram of encoder in Example 3

Branch code $=$ encoder output

Convolutional Decoding (3)

Example 4:

- Input data $m=11011$ and Tx codeword $X=1101010001$
- Received code Z = 1101011001

Decoded bits: 1

Performance comparison

- Comparison of diffrent coding schemes over Rayleigh fading channel with MSK modulation [4]

- All the codes have code rate \approx $1 / 2$.
- Convolutional code outperforms the RS codes due to soft-decision Viterbi decoding.

Discussion

- Selecting coding scheme for an application, tradeoffs on the following have to be considered
- Performance - Probability of uncorrected errors, Coding gain
- Overhead - Throughput, Code rate
- Complexity - Processing delay, Computational power
- To overcome individual drawbacks of coding schemes the following can be considered
- Concatenated codes - reduced length, high performance
- Hybrid ARQ - Improve throughput
- Interleaving - Alternative to long codes for burst errors
- Adaptive coding scheme - maximize code rate in varying channel [5]

References

[1] Bernard Sklar, "Digital Communications, Fundamentals and Application," Int'l ed., Prentice-Hall, 1998.
[2] J. G. Proakis, "Digital Communications," 4th ed., McGraw-Hill, 2001.
[3] William Stallings, "Wireless Communications and Networks," Upper Saddle River, New Jersey, Prentice-Hall, 2002.
[4] H. Liu et. al., "Error Control Schemes for Networks: An Overview," Baltzer Science Publishers BV, 1997.
[5] Pjilip K. McKinley, "A Study of Adaptive Forward Error Correction for Wireless Collaborative Computing," IEEE Trans. on Parallel \& Distributed Systems, vol. 13 no. 9, Sept. 2002.

Homework

1. Block code

- Given the generator polynomial of a $(7,4)$ cyclic code $g(x)=x^{3}+x^{2}+1$.
- Find the parity check matrix
- How many errors can this code detect and correct? How do you tell?
- Decode $\mathbf{y}=1011011$ (as in Example 2)

2. Convolutional code

- What is the principle of convolutional decoding?
- Based on the encoder in Example 3, decode the received sequence $Z=1110101001$ using Viterbi algorithm.

