

HELSINKI UNIVERSITY OF TECHNOLOGY

Error Control Block Codes and Convolutional Codes

23 March 2004

Mei Yen Cheong mycheong@cc.hut.fi

S72.333 Postgraduate Seminar in Radio Communications

Content

- 1. Introduction
- 2. Forward error control (FEC)
- 3. Linear Block Codes
 - Generic block codes
 - BCH codes
 - Reed-Solomon codes
- 4. Convolutional Codes
 - Convolutional encoding
 - Viterbi decoding algorithm
- 5. Discussion
- 6. References

Introduction (2)

Objective: Error control to compensate transmission impairment in order to increase quality of transmission.

- Datalink layer and transport layer (TCP) protocols
- Approaches for error control
 - Error detection CRC, parity check
 - Forward error correction (FEC) channel coding
 - Automatic Repeat Request (ARQ) Stop-and-wait, Go-back-N, etc..

Forward Error Control

 FEC scheme adds redundant bits to transmitted data to form codeword known as error correcting codes.

 Error correction code can be implemented with block codes or convolutional codes

Block Codes (1)

- Block error coding scheme divides the transmitted bit stream into nonoverlapping blocks of length k.
- Each k-bit block is map into an n-bit block called codeword.

Block Codes (2)

- The ratio k/n is called the code rate is a measure of how much excess bandwidth is required to transmit the data at the same data rate as without the code.
- The minimum distance d_{min} of a code is minimum Hamming distance between all vectors the code.

$$d_{\min} = \min_{i \neq j} \left[d(c_i, c_j) \right]$$

- Tells the minimum error correcting capability of the code
- Maximum number of guaranteed correctable errors/code word

 $t = \left| \frac{d_{\min} - 1}{2} \right|$, where $\lfloor x \rfloor$ is the largest integer $\leq x$.

Generic Block Codes Encoder (1)

Encoding of an (n,k) block code

• Multiplying data block with the generator matrix c = mG.

- The rows of **G** contains the basis of the (*n*,*k*) code.
- Only 2^k out of the 2ⁿ codes generated are valid codes.

Generic Block Codes Encoder (2)

- Nonsystematic codes
 - *n-k* check bits in random positions
- Systematic codes
 - First k bits contain data
 - Last n-k bits contain the check bits
 - Easier decoding

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & | & p_{11} & p_{12} & \cdots & p_{1n-k} \\ 0 & 1 & 0 & \cdots & 0 & | & p_{21} & p_{22} & \cdots & p_{2n-k} \\ \vdots & \vdots & \vdots & \ddots & \vdots & | & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & | & p_{k1} & p_{k2} & \cdots & p_{kn-k} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{I}_k & | \mathbf{P} \end{bmatrix}.$$

Generic Block Codes Decoder (1)

- Decoding involves multiplying the *n*-bit received block with the parity check matrix H.
- Let the received block be

 $\mathbf{y} = \mathbf{c} + \mathbf{e}$ = $\mathbf{m}\mathbf{G} + \mathbf{e}$.

Then

 $\mathbf{y}\mathbf{H}' = (\mathbf{m}\mathbf{G} + \mathbf{e})\mathbf{H}'$ $= \mathbf{m}\mathbf{G}\mathbf{H}' + \mathbf{e}\mathbf{H}'$ If = 0, $\mathbf{S} = \mathbf{e}\mathbf{H}'$. \longleftarrow Syndrome of the error pattern

➡ H (with dimension n-k) constitute the null space of the code I.e. GH' = 0.

Generic Block Codes Decoder (2)

- All-zero syndrome vector S=0 indicates no bit error has occured (e = 0).
- Nonzero syndrome vector indicates errors have occured
 - indicate the error positions if the number of errors in the block do not exceed *t*, error correction can be done
- H is the generator matrix of the dual code of G.
 - For systematic codes, **H** can be deduced from **G** as

 $\mathbf{H} = \begin{bmatrix} -\mathbf{P'} \mid \mathbf{I}_{n-k} \end{bmatrix}.$

Some well-known block codes

- Hamming codes
- Golay codes
- Hamadard codes
- BCH codes
- Reed Solomon Codes

Cyclic codes

Cyclic codes (1)

 A block code is said to be cyclic if and only if the cyclic shift of a codeword is another codeword.

$$\mathbf{c}_{1} = (\mathbf{c}_{1}, \mathbf{c}_{2}, \dots, \mathbf{c}_{n-1}, \mathbf{c}_{n}) \in \mathbf{C}$$

 $\mathbf{c}_{2} = (\mathbf{c}_{n}, \mathbf{c}_{1}, \dots, \mathbf{c}_{n-2}, \mathbf{c}_{n-1}) \in \mathbf{C}$

•

- The cyclical structure of the codes allows us to associate a code with polynomials
 - Can be efficiently implemented using linear shift-register based codecs.

Cyclic Codes (2)

- The generator polynomial g(x) of an (n,k) cyclic codes is a polynomial of degree n-k that divides $x^n + 1$.
- G can be obtained by arranging cyclically shifted version of g(x) into an n×k matrix as follow.

$$\mathbf{G} = \begin{bmatrix} g_1 & g_2 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & g_1 & g_2 & \cdots & g_{n-k} & 0 & \cdots \\ \vdots & \ddots & & \ddots & & \ddots \\ 0 & \cdots & 0 & g_1 & g_2 & \cdots & g_{n-k} \end{bmatrix}$$

can be reduced by row operation to systematic form

Cyclic Codes (3)

Example 1:

- Find the generator matrix of a (7,4) cyclic code. Encode 1010.
 - Factorization: $x^7 + 1 = (x + 1)(x^3 + x^2 + 1)(x^3 + x + 1)$
 - g(x) is of degree n k = 3, choose $g(x) = (x^3 + x + 1) \implies (1011)$

Cyclic Codes (4)

Example 2

- Find the parity check matrix **H** of the code. Find the syndrome and decode **y**=1011011.
 - **H** can be deduced from **G** $\mathbf{H} = |-\mathbf{P'}| \mathbf{I}_{n-k}|$.

 $\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \Rightarrow t = 1 \end{bmatrix} \begin{bmatrix} d_{\min} = 3 \\ \text{independent} \\ \text{columns} \end{bmatrix}$

- Syndrome: S = yH' = 011 Error pattern, e = 0001000
- Decoded data: $\hat{\mathbf{m}} = y + e$

BCH codes (1)

- BCH codes consist of cyclic codes which employ binary and nonbinary alphabets.
- BCH codes are 3-parameter codes expressed as (n,k,t) BCH code.
- For any positive integer $m \ge 3$; $(n \ge 7)$,

Block	length.		n=2	^m _ 1	
DICON	longui				
Check	bits:		n-k	< m	t
	alarahanan aranan aran anarahanan arananan aranan aranan aranan	anananananananana arananananananana Arananananananana	alalara alara alara alara alara alara alara alara alara	\sim	ananananananananan anananananananan anan <u>a</u> nananananan
IVIINIM	um disi	tance:	$a_{min} =$	= 2t -	

BCH Codes (2)

- The parameter set provide large selection of block lengths, code rates and error correcting capabilities.
- Nonbinary BCH takes *q*-ary symbols where *q* is any power of a prime number p; $\Rightarrow q = p^{z}$.
- For any positive integer *s*, *q*-ary BCH code is of length $n = q^s 1$.
- To correct up to *t* errors, the number of parity check bits needed is $n k \le 2st$.

Note: Table of binary BCH codes parameters in Appendix

Performance of BCH codes

BCH codes on channel with random errors [4]

Reed-Solomon Codes (1)

- Reed-Solomon (RS) codes are a special subclass of nonbinary BCH codes with parameter $s=1 \Rightarrow n = q 1$.
- The parameters of an (n,k,t) RS code are as follows.

Block length:n = q - 1Check bits: $n - k \le 2t$ Minimum distance: $d_{\min} = 2t + 1$

- RS codes have optimal distance properties
 - the extra reduncdancy provided by nonbinary alphabets.
 - For fixed number of check bits, RS codes provide optimal error correcting capability.

Reed-Solomon Codes (2)

- Practical RS codes take alphabets of $q = 2^m$.
- Special feature: Extended RS code with length n+2
 - 2 information symbols can be added to the length *n* RS code without reducing the minimum distance.
- Effective in burst-error correction.
- Efficient for channels where the set of input symbols is large.

Convolutional codes

- Convolutional codes are encoded with encoders with memory
 - Encoder outputs at an instant not only on the current inputs but also some past inputs
- An (n,k,m) convolutional code
 - generates n encoded bits for every k data bits
 - m is the memory of the the encoder
- Code rate is the ratio of number input bits to the corresponding number of output bits k / n.

Convolutional Encoding

Example 3:

A ¹/₂-rate (2,1,2) binary convolutional encoder. Encode x=101.

S72.333 Postgraduate Seminar in Radio Communications

Convolutional Decoding (1)

 Convolutional decoding is based on Maximum Likelihood (ML) concept. It's an optimum decoder.

$$P(Z \mid X^{(m')}) = \max_{\text{all } X^{(m)}} \left\{ P(Z \mid X^{(m)}) \right\}$$

- Viterbi algorithm performs reduced complexity ML decoding
 - Eliminate least likely trellis path at each transition stage
 - Reduced decoding complexity with early rejection if unlikely paths
- Code trellis structure is exploited in viterbi decoding.

Convolutional Decoding (2)

Trellis diagram of encoder in Example 3

Convolutional Decoding (3)

Example 4:

- Input data m = 1 1 0 1 1 and Tx codeword X = 11 01 01 00 01
- Received code Z = 11 01 01 10 01

S72.333 Postgraduate Seminar in Radio Communications

Performance comparison

 Comparison of diffrent coding schemes over Rayleigh fading channel with MSK modulation [4]

Discussion

- Selecting coding scheme for an application, tradeoffs on the following have to be considered
 - Performance Probability of uncorrected errors, Coding gain
 - Overhead Throughput, Code rate
 - Complexity Processing delay, Computational power
- To overcome individual drawbacks of coding schemes the following can be considered
 - Concatenated codes reduced length, high performance
 - Hybrid ARQ Improve throughput
 - Interleaving Alternative to long codes for burst errors
 - Adaptive coding scheme maximize code rate in varying channel [5]

References

- [1] Bernard Sklar, "Digital Communications, Fundamentals and Application," Int'l ed., Prentice-Hall, 1998.
- [2] J. G. Proakis, "Digital Communications," 4th ed., McGraw-Hill, 2001.
- [3] William Stallings, "Wireless Communications and Networks," Upper Saddle River, New Jersey, Prentice-Hall, 2002.
- [4] H. Liu et. al., "Error Control Schemes for Networks: An Overview," Baltzer Science Publishers BV, 1997.
- [5] Pjilip K. McKinley, "A Study of Adaptive Forward Error Correction for Wireless Collaborative Computing," IEEE Trans. on Parallel & Distributed Systems, vol. 13 no. 9, Sept. 2002.

Homework

- 1. Block code
 - Given the generator polynomial of a (7,4) cyclic code $g(x) = x^3 + x^2 + 1$.
 - Find the parity check matrix
 - How many errors can this code detect and correct? How do you tell?
 - Decode y=1011011 (as in Example 2)
- 2. Convolutional code
 - What is the principle of convolutional decoding?
 - Based on the encoder in Example 3, decode the received sequence $Z = 11 \ 10 \ 10 \ 01 \ \text{using Viterbi algorithm.}$