Stability-throughput-delay tradeoff in CSMA

Deze Zhao (<u>dzhao@cc.hut.fi</u>) 30/03/2004

For S-72.333 postgraduate course in radio communications

I. Introduction(1)

- The assumptions in previous studies for non-persistent and *p*-persistent CSMA (Carrier Sense Multiple Access)
- Infinite number of users having Poisson input
- Steady state condition prevail
- Empirically determined stationary state-steady state (e.g., after 10,000 packet transmission time)
- These merely represent approximation to the physical situation
- Moreover, the extensive simulation runs performed on ALOHA channels with an infinite population have shown that the assumption of channel equilibrium may not always be valid
- In fact, after some finite period of quasi-stationary condition, the channel will drift into saturation with probability one

Introduction(2)

- A more representative measure of channel performance is the stability-throughput-delay trade-off
- Stable channel: the equilibrium throughput-delay results are achievable over an infinite time horizon
- Unstable channel: such channel performance is achievable only for some finite time period before the channel goes into the saturation
- Applying the stability theory defined in [2] in order to predict the behavior of CSMA channels
- Discuss the conditions under which we can guarantee stability and finally give the performance of these guaranteed stable channels

II. The model and analysis(1)

- Assumptions: the slot size *τ*, the packet fixed length *T*, terminals *M* (users)
- Each user can be in one of two states: *backlogged* or *thinking*
- In the thinking state, a user generates a new packet in a slot with probability $\ \sigma$
- In backlogged state, a user is scheduled to re-sense the channel in the current slot with a probability v
- They are assumed to be memoryless and time invariant
- The discrete states space of the system consists of the integers {1,2,3,...,M}

The intervals time of a cycle between two consecutive idle periods (in slots)

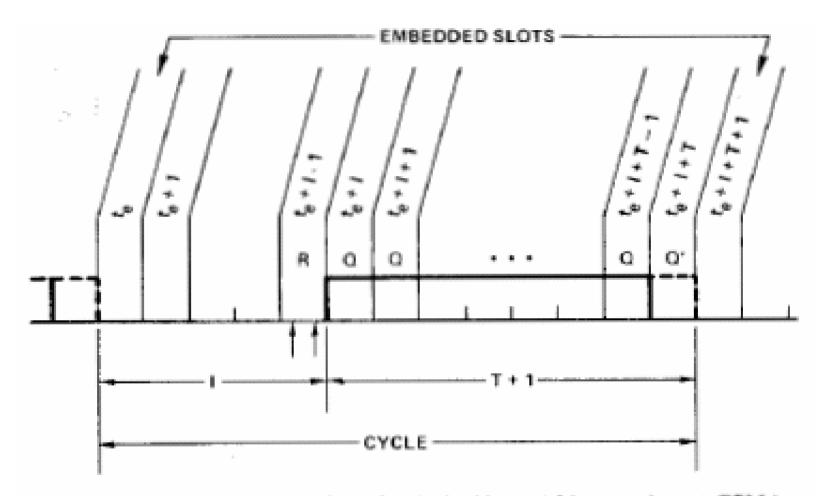


Fig. 1. The Imbedded Markov Chain in Slotted Nonpersistent CSMA. 3/29/2004

The model and analysis(2)

- The probability that some terminal is ready to transmit is given by
- Condition on the fact that a transmission starts at slot *t_e+1* be one-step transition matrix between slot *t_e+1-1* and *t_e+1*

Pr {some terminal is ready/
$$N^{t}e^{+I-1} = i$$
}

$$= 1 - (1 - \nu)^{i}(1 - \sigma)^{M-i}$$
.

$$r_{ik} = \begin{cases} 0, & k < i \\ \frac{(1-\sigma)^{M-i} [1-(1-\nu)^i]}{1-(1-\nu)^i (1-\sigma)^{M-i}}, & k = i \\ \frac{\binom{M-i}{k-i} (1-\sigma)^{M-k} \sigma^{k-i}}{1-(1-\nu)^i (1-\sigma)^{M-i}}, & k > i. \end{cases}$$

The model and analysis(3)

- The probability of a successful transmission over a cycle when Nte = n
- The stationary backlog distribution

$$\frac{P_{s}(n)}{(1-v)^{n}(M-n)\sigma(1-\sigma)^{M-n+1}+nv(1-v)^{n+1}(1-\sigma)^{M-n}}{1-(1-v)^{n}(1-\sigma)^{M-n}}$$

$$\Pi = \{\pi_0, \cdots, \pi_j, \cdots, \pi_M\}$$

where

$$\pi_j = \lim_{t_e \to \infty} \Pr\left\{N^{t_e} = j\right\}.$$

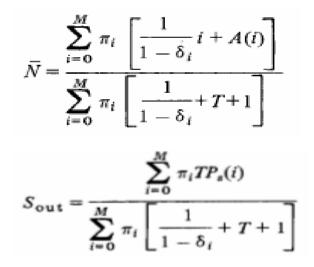
The model and analysis(4)

- Distribution of the length of the idle period. If we note that no terminals become ready during slot t is, $\delta_i = (1-\nu)^i (1-\sigma)^{M-i}$ then
- Stationary average channel backlog
- Stationary average channel throughput
- Expected packet delay

$$D = \frac{\overline{N}}{S_{out}}$$

$$\eta_k(i) = (1 - \delta_i) \delta_i^{k-1}.$$

The average idle period is $1/(1 - \delta_i)$.



III. Stability considerations

- The expected number of new packets generated (input rate) over the cycle normalized with respect to *T*
- As M going to infinite, and having Mσ=s, (s is the poisson distribution of input rate) the successful transmission probability

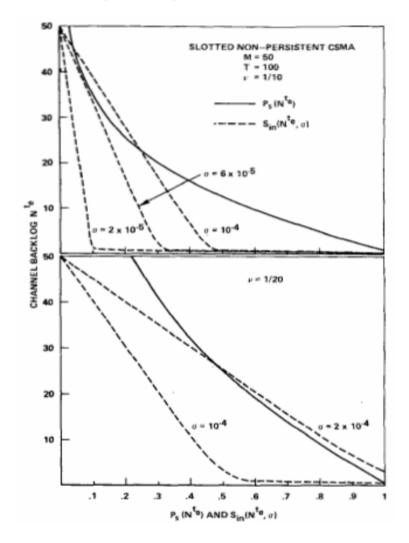
$$S_{in}(n, \sigma) \cong S_{in}'(n, \sigma) = (M - n)\sigma \left[\frac{1}{1 - \delta_n} + T + 1\right]$$

$$\overline{S_{in}(n, \sigma)} \cong \overline{S_{in}'(n, \sigma)} = (M - n)\sigma T$$

$$P_s(n) \cong P_s'(n) = \frac{(1-\nu)^n s e^{-s} + n\nu(1-\nu)^{n-1} e^{-s}}{1-(1-\nu)^n e^{-s}}$$

Expected number of successful packets $P_s(n)$ and new packets $S_{in}(n, \sigma)$

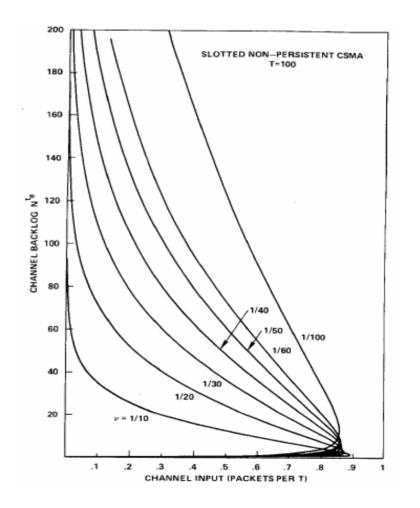
- The equilibrium points can be observed when
 Ps(n) = Sin(n, σ*), thus the equilibrium contour can be defined for a given ν
- The system has to increase the channel backlog (this occurred when $Ps(n) < Sin(n, \sigma)$, lies outside of equilibrium contour) or to decrease the channel backlog $(Ps(n) > Sin(n, \sigma)$, when the points outside the equilibrium contour)



Equilibrium contour

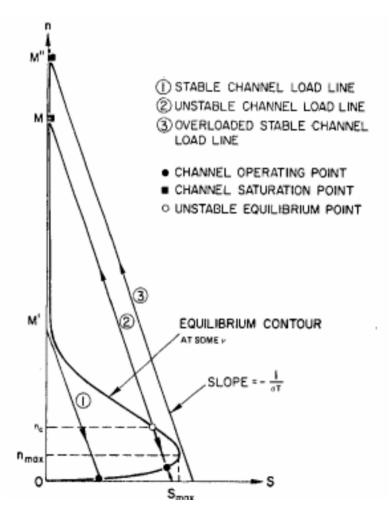
- Using σ* for each n, we may plot a family of equilibrium contours for various of ν
- And the instantaneous system output

$$\overline{S_{\text{out}}(n)} \triangleq \frac{P_s(n)T}{1/(1-\delta_n)+T+1}$$



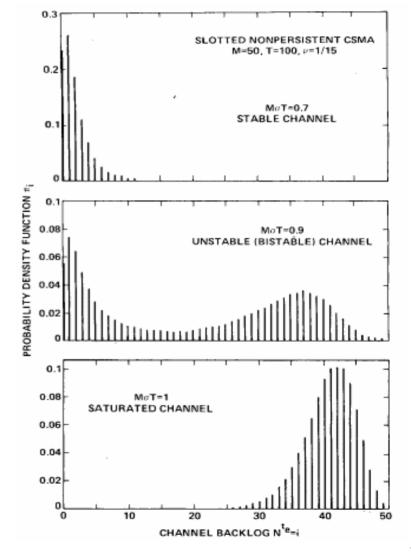
Hypothetical stable and channels

If we define the channel load line as
 S = (M-n) σT, then we have



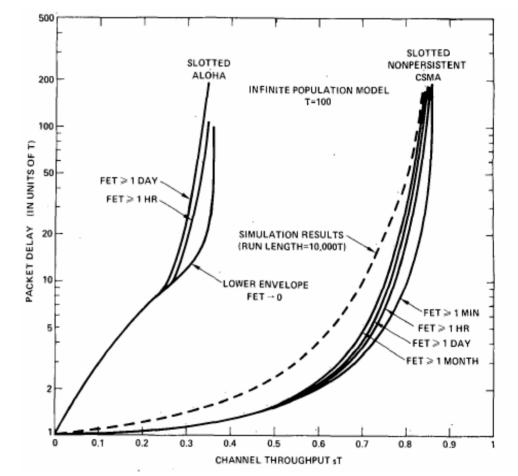
Stationary backlog distribution for stable, unstable, and saturated channels

 The statements in previous slide are verified by observing the figure (on left), the density function of the stationary backlog distribution



FET: A stability measure

- FET (first exit time): the average time to exit the stable states (safe region) into unsafe region
- On the left we give a comparison between slotted ALOHA and non-persistent CSMA
- Stability-delay-throughput tradeoff for the infinite population model



IV. Dynamic control for improved performance in CSMA channels

- In the context of slotted ALOHA, two classes of control actions were considered [3]. The input control and the retransmission control
- The input control procedure allows the channel to either accept or reject new packets from their sources
- The retransmission control procedure allows the channel transmitters to impose either large or small retransmission delay on previously collided packets
- Here, we limit ourselves to the retransmission control
- The aim is to find a optimal v^* which will maximizing the instantaneous throughput

The simplification of averaged Sout

- As we known for infinite population case
- It is also very accurate expression for finite *M* as $s = M \sigma$
- And by the approximation that

$$(1-\nu)^k by \ 1-k\nu$$

$$\overline{S_{\text{out}}(n)} = \frac{(1-\nu)^n s e^{-s} T + n\nu (1-\nu)^{n-1} e^{-s} T}{1 + (T+1)[1-(1-\nu)^n e^{-s}]}$$

$$\overline{S}_{out}(n) \cong \frac{n\nu[1 - (n-1)\nu]T}{1 + (T+1)n\nu}$$

The simplification of averaged S_{out} and the optimal v

- The derivative of this last expression yields the second degree equation
- The optimal solution is found as
- Furthermore it can be simplified as

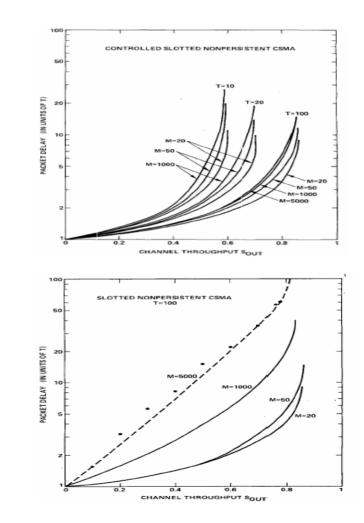
$$(T+1)n(n-1)v^2+2(n-1)v-1=0$$

$$\nu^* = \frac{-1 + \sqrt{1 + \frac{n}{n-1}(T+1)}}{(T+1)n}$$

$$\nu^*(n) = \begin{cases} 1, & \text{if } n = 0\\ \\ \frac{1}{n\sqrt{T}}, & \text{if } n \ge 1 \end{cases}$$

Controlled slotted non-persistent CSMA: Throughput-Delay Performance

- The figures showed us the steady-state performance of controlled CSMA channels for various of M and T
- The significant improvement (upper figure) in delay, particularly with large populations compared to uncontrolled channels (lower figure)
- Thank you!



References

- [1] Tobagi, F.; Kleinrock, L.; Packet Switching in Radio Channels: Part IV-Stability Considerations and Dynamic Control in Carrier Sense Multiple Access, IEEE Transactions on Communications, [legacy, pre -1988], Volume: 25, Issue: 10, Pages:1103 – 1119, October 1977.
- [2] L. Kleinrock and S. Lam, "Packet switching in a multiaccess broadcast channel: Performance evaluation," IEEE Trans. Cornmun., vol. COM-23; pp. 410-423, Apr. 1975.
- [3] S. Lam and L. Kleinrock, "Packet switching in a multiaccess broadcast channel: Dynamic control procedures," IEEE Trans. Commun., vol. COM-23,pp. 891-904, Sep. 1975.

Homework

(1) The probability of backlogged packets *i* at time of an idle period defined as $\delta_i = (1 - \nu)^i (1 - \sigma)^{M-i}$ That meant no terminals become ready during slot *t*; thus giving the probability of idle length *I* with $\eta_k(i) = (1 - \delta_i) \delta_i^{k-1}$

prove that the average length of the idle period is $1/(1-\delta_i)$

(2) In paper[1], the stationary average channel throughput is given as below. Explaining the meanings of the symbolic terms in the numerator and denominator such $as_{\tau_i}, T, P_s(i)$ and v, σ in δ_i

$$S_{out} = \frac{\sum_{i=0}^{M} \pi_i T P_s(i)}{\sum_{i=0}^{M} \pi_i [\frac{1}{1 - \delta_i} + T + 1]}$$