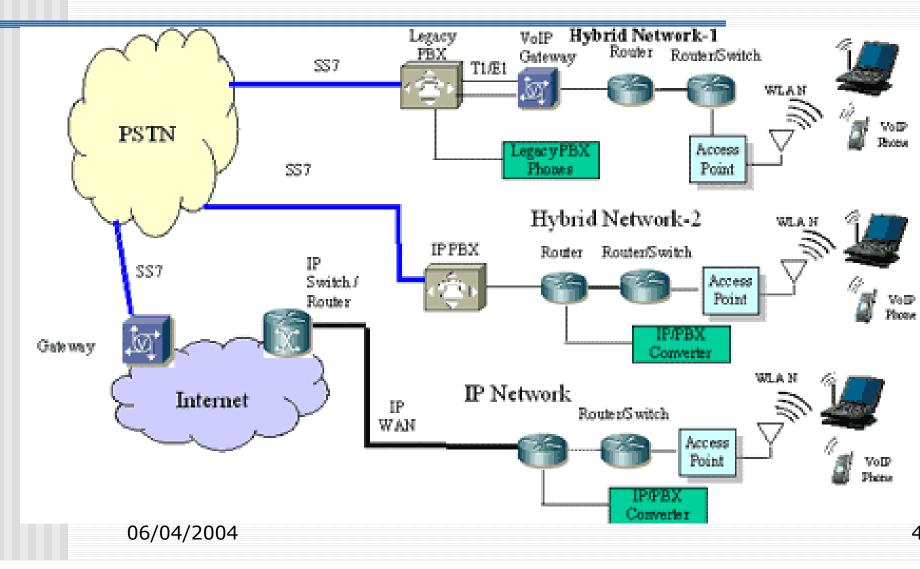
VoIP in 802.11

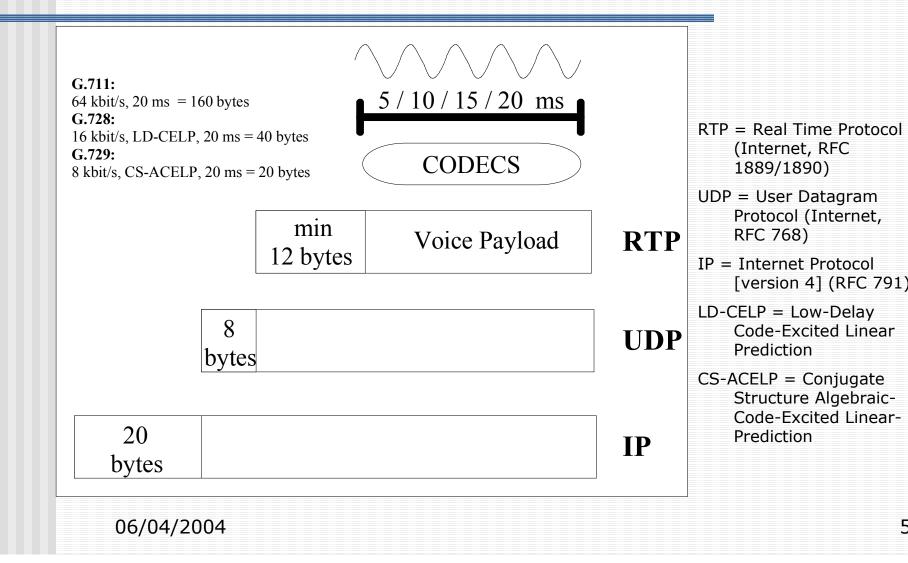
Mika Nupponen

S-72.333 Postgraduate Course in Radio Communications

06/04/2004


Contents

- Introduction
- VoIP & WLAN
- Admission Control for VoIP Traffic in WLAN
- Voice services in IEEE 802.11 wireless LANs
- DCS vs. PCF
- VoIP Throughput in IEEE 802.11b
- Conclusions


Introduction

- Seamless wireless data and voice communication is fast becoming a reality
- One key capability in the next-generation wireless world will be Voice over Internet Protocol (VoIP) using 802.11 wireless local area networks (WLANs)
- The technology to enable one phone number for broadband wireless data and voice communication is available
- The remaining issues facing handset designers, carriers and service providers as well as enterprise and residential network designers relate to questions of deployment, configuration and network architecture

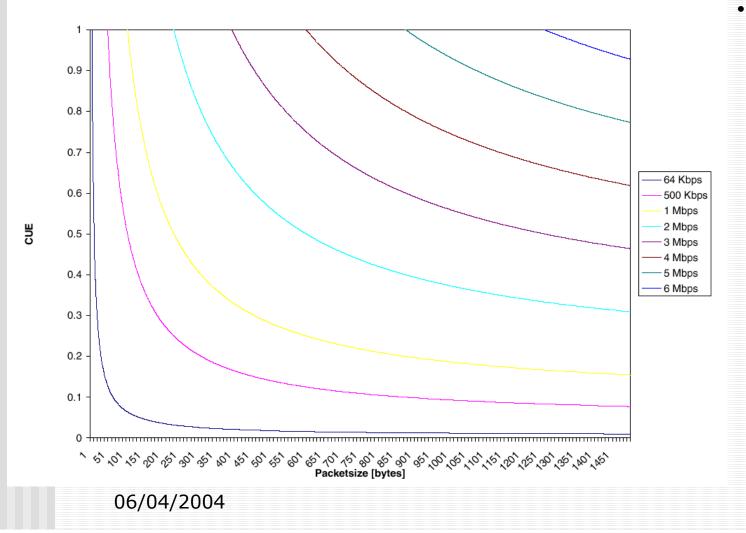
VoIP & WLAN

VoIP & Protocol Stack

VoIP & WLAN overhead

- RTP 12 bytes
- UDP 8 bytes
- IP 20 bytes
- 802.11b MAC 34 bytes
- 802.11b PHY with short preamble 15 bytes OR
- 802.11b PHY with long preamble 24 bytes

Admission Control

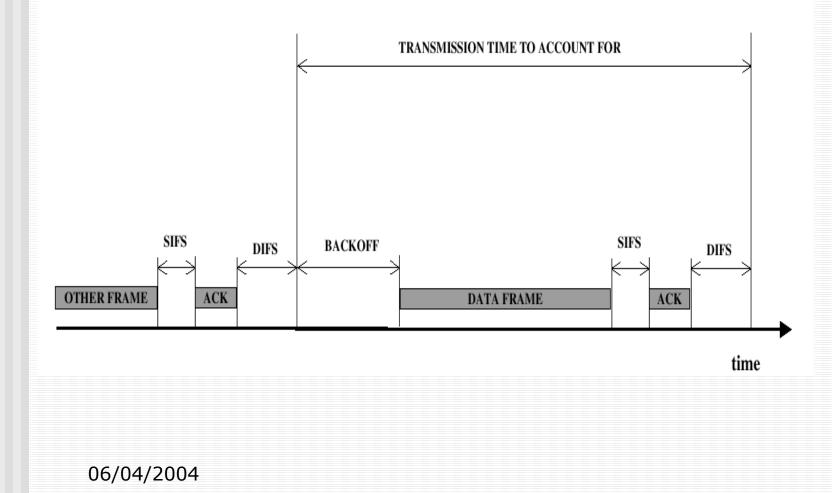

- For VoIP flows, the bandwith and other traffic characteristics of the flow do not change during the lifetime of flow
- For data flows the traffic characteristics may change over time
- When the traffic exceeds the capacity of the wireless network
 - → Unacceptable call quality for all ongoing VoIP calls (in most cases AP send more traffic than other → AP's traffic is reduced)
 - \rightarrow VoIP flows needs full recources
- Admission control for VoIP flows is necessary, traffic control is sufficient for data traffic

Channel Utilization Estimation

- In 802.11 wireless networks, the channel utilization of a flow and remaining network capacity cannot be measured by bandwith
 - For example: In 802.11b fixed overhead per frame transmission is 765 μ s at 11 Mbit/s (single client case)
 - 100 byte payload \rightarrow max. 1193 frames/s \rightarrow 954 kbit/s
 - 1000 byte payload \rightarrow 670 frames/s \rightarrow 5,36 Mbit/s
- Question to answer: "Can the network support one more VoIP flow?"
- Proposal:

The use of fraction of time needed to transmit the flow over the network as a indicator for network usege of a flow \rightarrow Channel utilization Estimation (CUE)

Packet size vs. Channel utilization



 Single client sending at 11 Mbit/s

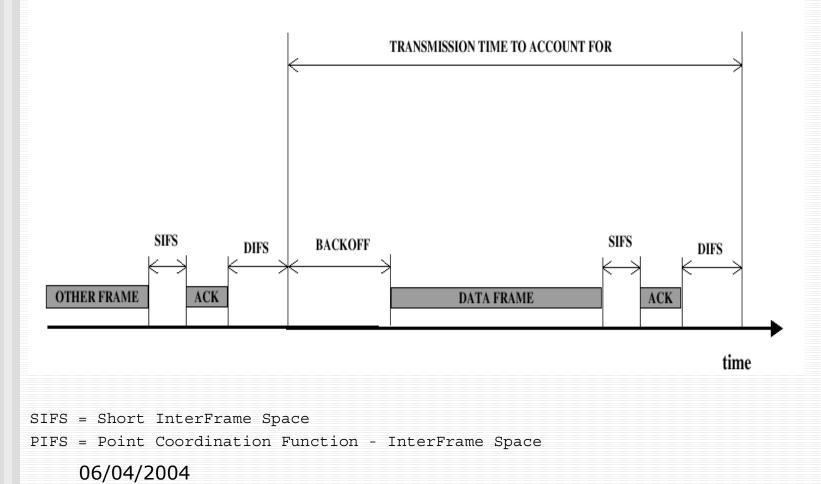
CUE

 CUE of the flow is the fraction of time the network is busy transmitting data for that flow 						
 The sum of the all flows (CUE_{total}) is the fraction of time the network is busy transmitting all flows 						
Fully loaded media CUE _{total} = 1						
 Measuring the CUE in standard DCF MAC 						
scheme:	Part	Time [s]				
- Data frame size b?	Doto Eromo	$100 \mu_0 \pm h_0/D$				
[bytes]	Data Frame	$192\mu s + b \cdot 8/R$				
- Data rate R?	SIFS	$10 \mu s$				
[bit/s]	ACK	$192\mu s + 14 \cdot 8/R$				
- Back-off time?	DIFS	$50 \mu s$				

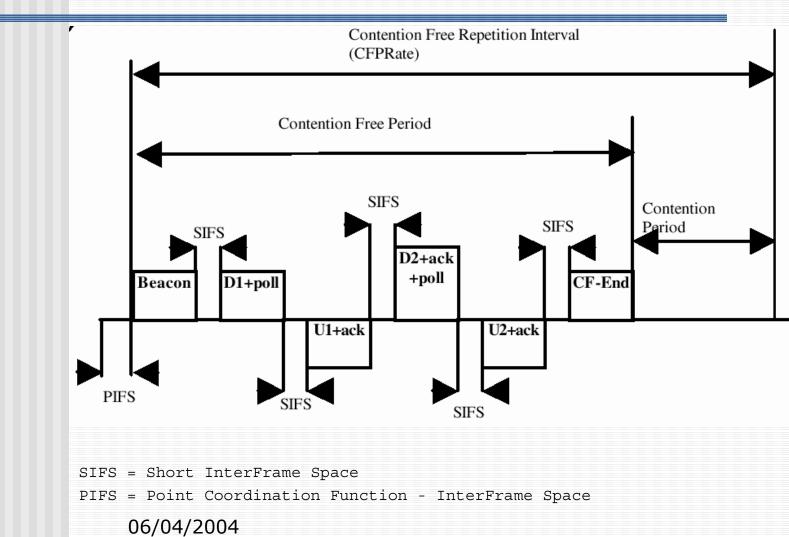
IEEE802.11 CSMA/CA medium access scheme

Using CUE for Admission Control

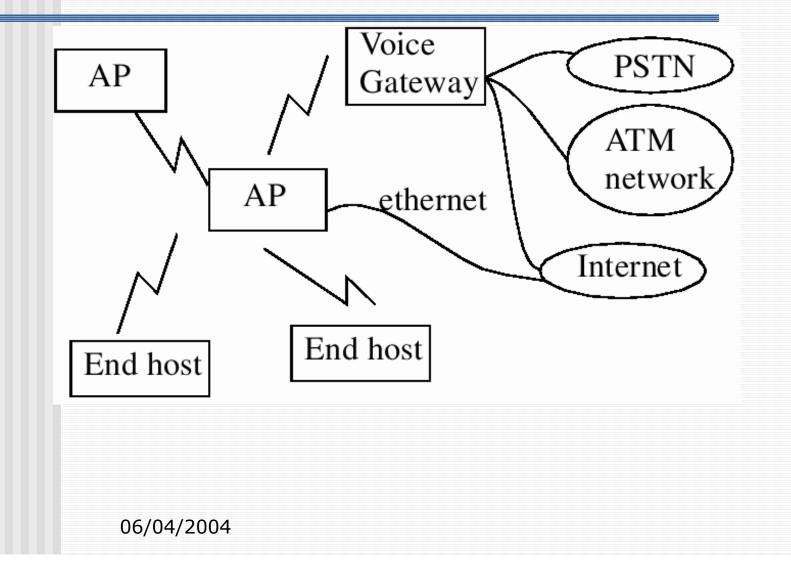
- 1. Detecting new flows:
- VoIP streams can be detected monitoring for traffic initiatiate the call (packets to H.323 port or packets containing SIP messages
- New TCP flows can be detected from SYN/ACK bits in TCP packet headers.
- 2. Calculate CUE_{total}
- 3. Estimate CUE for new VoIP-flow
- If $CUE_{total} + CUE_{new} < CUE_{totalMAX} \rightarrow New VoIP-flow$


Bandwidth restrictions for non-VoIP flows may be needed

Voice services in IEEE802.11b: DCF vs. PCF I


- DCF mode is the fundamental access method of 802.11 MAC sublayer and it uses CSMA/CA
 - -> supports data services
 - -> large/unbounded delay when load is high
- PCF mode uses polling and offers a "packet-switched connection-oriented service"
 - \rightarrow + well suited for telephony traffic
 - \rightarrow + CBR or VBR mode
 - \rightarrow support for PCF is not so commonly available
- DCF = Distributed Coordination Function PCF = Point Coordination Function MAC = Media Access Control CSMA/CA = Carrier Sense Multiple Access with Collision Avoidance

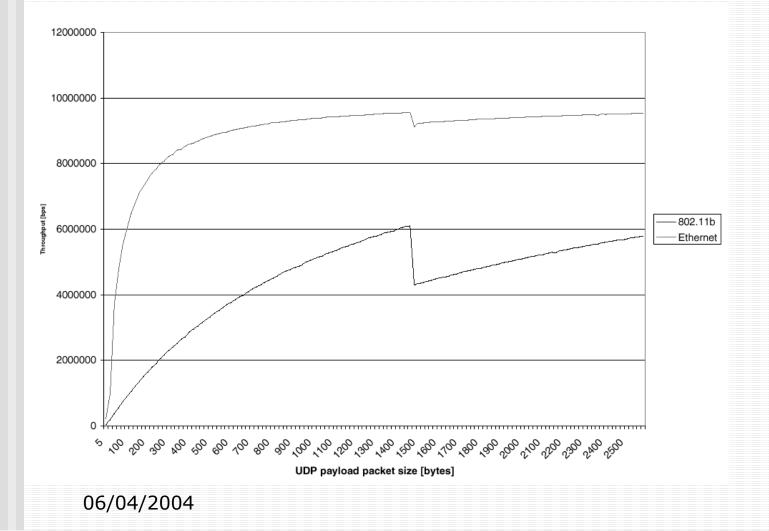
06/04/2004


DCF vs. PCF II

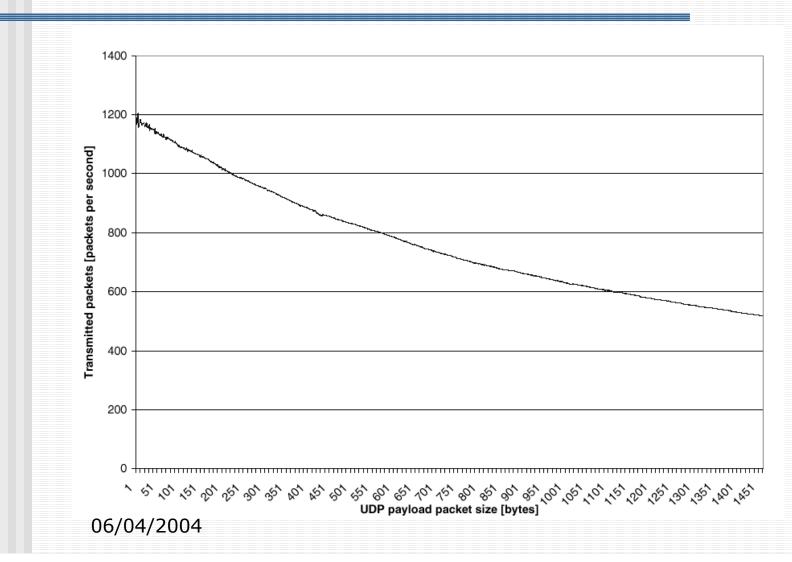
DCF vs. PCF III

Network Architecture I

Network Architecture II


- Voice gateway converts 802.11 protoc stack to:
 - PCM voice for use on the PSTN
 - Voice over ATM Adaptation layer for ATM-networks
 - Voice over Real-time Transport Protocol for IP networks
- PCF-mode between AP and voice gateway

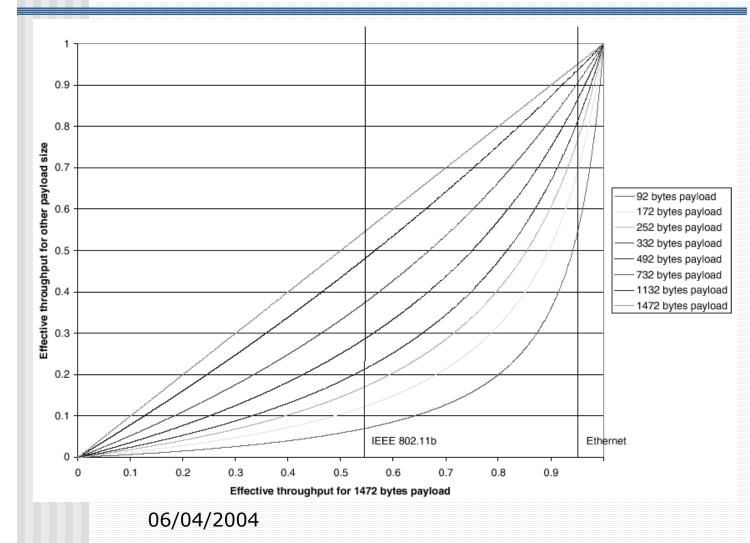
VoIP throughput in IEEE 802.11b Experimental Stydy - Garg & Kappas [2]


SETUP:

- 8 clients, all PC:s, win2000
- One AP connected to IEEE 802.3 (ethernet) LAN
- AP & clients in same room without physical obstacles
 - \rightarrow no frame losses due to weak signal strenght
 - \rightarrow no hidden terminal problems
- Traffic: UDP packets \rightarrow accurate estimate of the actual bandwith that is available in the network
- 1) Single client case
- 2) Multiple UDP senders

Throughput – one client

Transmitted packets/s – one client


Maximal number of VoIP connections using ITU G711 A-LAW codec

Frames sent out every 10 ms → 92 bytes payload (12 bytes from fixed RTP header)

Audio (ms)	G711	G729	G723		VoIP conn.	UDP Throughput		
10	6	7			0	6.06 Mbps		
20	12	14			1	5.15 Mbps		
30	17	21	21		2	4.26 Mbps		
40	21	28			3	3.28 Mbps		
50	25	34	42		34 41 42		Fach VoIP	connection
60	28	41						2 UDP streams
70	31	47				(streams) reduces the		
80	34	54				it of the other		
90	36	60	61		61			er app. 900 kbit/s.
100	39	66			ODI SCHU			

06/04/2004

Effective throughput of network

Effective throughput of a network for 92, 172, 252, 332, 492, 732, 1132 and 1472 bytes (packet sizes used by a G711 a-Law codec with audio data length 10ms, 20ms, 30ms, 40ms, 60ms, 90ms, 140ms, respectively) of payload as a function of the effective throughput for 1472 bytes of payload. The vertical lines mark the values for IEEE 802.11b and Ethernet.

Conclusions

- VoIP call quality is fine as long as the network throughput limit is not exceeded (packet loss, delay & jitter acceptable)
 → admission control needed
- Payload size affect the throughput of WLAN network
 - \rightarrow + increasing audio data length per packet
 - \rightarrow -- delay, quality of voice when loosing a packet
 - \rightarrow \rightarrow Optimal payload size
- PCF mode can be used to carry telephone traffic
 - -> + (almost) fixed delay, optimal payload size

References

- Admission control for VoIP traffic in IEEE 802.11 networks Garg, S.; Kappes, M.; IEEE Global Telecommunications Conference, 2003. GLOBECOM '03., Volume: 6, Pages: 3514 -3518, 1-5 December 2003.
- An experimental study of throughput for UDP and VoIP traffic in IEEE 802.11b networks Garg, S.; Kappes, M.; IEEE Wireless Communications and Networking, Volume: 3, Pages:1748 – 1753, 16-20 March 2003.
- 3. Support of voice services in IEEE 802.11 wireless LANs Veeraraghavan, M.; Cocker, N.; Moors, T.; INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies., Volume: 1, Pages:488 - 497, 22-26 April 2001.
- 4. <u>http://www.iec.org/online/tutorials/ti_voip_wlan/</u>

HOMEWORK

Let us assume that compressed digital speech with a bit rate of 12 kbit/s is sent from a VoIP client to AP (and then to another network) (IEEE 802.11b network, 11 Mbit/s, DCF-mode, RTS/CTS option is not used)

- a) What is the packing delay at the sending side if voice payload 48 bytes?
- b) What is the packing efficiency when the packing delay is not allowed to exceed 10 ms?
- c) Approximate (and give short explanation) how many VoIP flows there can be at the same time in one cell in case b). No other traffic is assumed.