Helsinki University of Technology

T-72.333 Postgraduate Course in Radio Communications

RF Distortion Analysis for OFDM WLAN (part I)

Hafeth Hourani Hafeth.hourani@nokia.com

Outline

- Amplifier Nonlinearity
- Pre-distortion Techniques
- OFDM and PAPR
- Conclusions

Next . . .

Amplifier Nonlinearity

- Pre-distortion Techniques
- OFDM and PAPR
- Conclusions

Amplifier Non-Linearity

Amplifier non-linearity leads to

- > Harmonic Distortion
- Intermodulation Distortion / Spectral Regrowth
- Cross Modulation
- > SNR Degradation
- Constellation Deformation

Harmonic Distortion

Harmonics distortion comes because of the amplifier non-linear transfer characteristics

$$v_o = a_1 v_i + a_2 v_i^2 + a_3 v_i^3 + a_4 v_i^4 + \dots$$

- Every nonlinear term (n > 1) generates a new harmonic component at nf₁ and nf₂
- Harmonics can be filtered out without degrading the system performance, since they are far away from the fundamental frequency

Intermodulation Distortion (1/2)

- Intermodulation Distortion (IMD) is a result of amplifier nonlinear terms (n > 1)
 - > generates Intermodulation products (IMP) at $f_{im} = m f_1 n f_2$
 - Distortion order = n + m

6

Intermodulation Distortion (2/2)

 IMD is a serious problem in RF systems, especially the third-order IMD (IM3)

> At $2f_2 - f_1$ and $2f_1 - f_2$

- IM3 is the strongest and the most closest to the fundamental frequency components
- IMD products appear regularly on either side of each carrier
- Odd-order products introduce in-band distortion
- Even-order products introduce out-of-band distortion

Cross Modulation

The crossmodulation comes as a result of the amplifier nonlinearity

> For the input
$$V_{in} = V_1 \cos(2\pi f_{c_1} t) + V_2 (1 + m(t)) \cos(2\pi f_{c_2} t)$$

> The 3rd order term is
$$V_o = \frac{3}{2}a_3V_1V_2^2(1+2m(t)+m^3(t))\cos(2\pi f_{c_1}t)$$

> New modulation term at f_{c1}

Spectral Regrowth

- Also called "Adjacent Channel Interference"
- IM3 energy leaks to the adjacent channels
- ACLR (Adjacent Channel Leakage Ratio)

Constellation Deformation

16-QAM signal

Input signal

Output signal

Measuring Nonlinearity

Most common measures of nonlinearity

- > 1-dB compression point
- > Intercept points
- > AM/AM and AM/PM conversion

1-dB Compression Point

The point where the output signal gain has dropped by 1dB from the ideal linear characteristics

3rd Order Intercept Point (IIP3)

The interception point between the the extrapolated linear fundamental component and 3rd distortion product

/RF Distortion Analysis for OFDM W

Amplifier Dynamic Range

Distortion in Power Amplifiers

There are two reasons for power amplifiers distortion

- > Distortion due to the amplifier nonlinear characteristics
 - Small signal distortion
- > Distortion due to the amplifier saturation
 - Large signal distortion
- The impact of the large-signal-distortion is more sever than that of small-signal-distortion

Amplifier Back-Off

Input Back-Off (IBO)

$$IBO = 10 \log \left(\frac{P_{sat,in}}{P_{avg,in}}\right)$$

Output Back-Off (OBO)

$$OBO = 10 \log \left(\frac{P_{sat,out}}{P_{avg,out}}\right)$$

Next . . .

Amplifier NonlinearityOFDM and PAPR

Pre-distortion Techniques

Conclusions

OFDM Problems

- There are some obstacles when using OFDM
 - > High sensitivity to the frequency errors
 - > Intercarrier Interference (ICI) between the subcarriers
 - > OFDM signal exhibits very high Peak to Average Power Ratio (PAPR)

PAPR of OFDM Signals

The complex envelope of the OFDM signal, over T second interval is given by

$$S(t) = A_c \sum_{n=0}^{N-1} w_n \varphi_n(t), \qquad 0 > t > T$$

Where

- A_c is the carrier amplitude, and
- W_n is the data vector

And the orthogonal carriers are

$$\varphi_n(t) = e^{j2\pi f_n t}$$

where

$$f_n(t) = \frac{1}{T} \left(n - \frac{N-1}{2} \right)$$

PAPR Definition

Quantifying PAPR

- As N becomes larger, the imaginary and real parts of S(t) becomes Gaussian distributed (central limit theory)
 - > The amplitude of PAPR has a Rayleigh distribution, with zero mean and variance N times of one complex sinusoid
- Assuming mutually uncorrelated symbols, the CDF of PAPR per OFDM symbol is given by

$$\Pr\left\{PAPR > \gamma\right\} = \left(1 - \left(1 - e^{\gamma}\right)^{N}\right)$$

PAPR Properties

- From the pervious two slides, we can conclude the following PAPR properties
 - > PAPR results from the superposition of large number of subcarriers
 - > The PAPR follows the Rayleigh distribution
 - > The large peaks do not occur very often

Next . . .

- Amplifier Nonlinearity
- OFDM and PAPR

Pre-distortion Techniques

Conclusions

Predistortion Techniques

- Attempts to compensate for the nonlinear distortions by modifying the input signal characteristics
 - > These modifications can be either non-adaptive or adaptive

Amplitude Clipping

Limits the peak envelope of the input signal to a predefined value

$$L(x) = \begin{cases} x, |x| \le A \\ Ae^{j \arg(x)}, |x| > A \end{cases}$$

- The amplitude clipping introduces additional distortion, which can be viewed as a *clipping noise*
 - In-band noise for Nyquist sampled signals
 - > Out-of-band noise for oversampled signals

Clipping Ratio

Clipping Ratio (CR)

The ratio of peak value (A) to the RMS value of the OFDM signal

/RF Distortion Analysis for OFDM WLAN/ 07.04.2004

Clipping Noise

Clipped and Filtered OFDM signals

/RF Distortion Analysis for OFDM WLAN/ 07.04.2004

Next . . .

- Amplifier Nonlinearity
- OFDM and PAPR
- Pre-distortion Techniques

Conclusions

Conclusions

- Clipping is the simplest and most common nonadaptive predistortion technique
- Although clipping helps limits the peak amplitude of the input signal, it also introduces an additional noise source called clipping noise
- Clipping noise can greatly degrade the BER performance of the system

References

- J. Heiskala and J. Terry, "OFDM Wireless LAN: A Theoretical and Practical Guide", SAM Publishing, 2001
- Peter B. Kenington, "High Linearity RF Amplifier Design", Artech House, 2002

Exercise

Clipping is one method to overcome the PAPR in OFDM. List three other methods, and give a two lines description for each.

Hint.

There are around 9 popular PAPR reduction methods.

You may google the internet with "PAPR Reduction"