Amplifier Nonlinearities in OFDM Multiple Antenna Systems

FERNANDO GREGORIO gregorio@wooster.hut.fi Signal Processing Laboratory HUT

25.5.2004

Outline

- □ Introduction
- □ Peak to Average (PAR)
- □ Clipping
- □ Diversity in OFDM
- □ Clustered OFDM
- □ Interleaved OFDM
- Simulations and discussion
- Conclusions
- □ References
- □ Homework

25.5.2004

1

S-72.333 Postgraduate Course

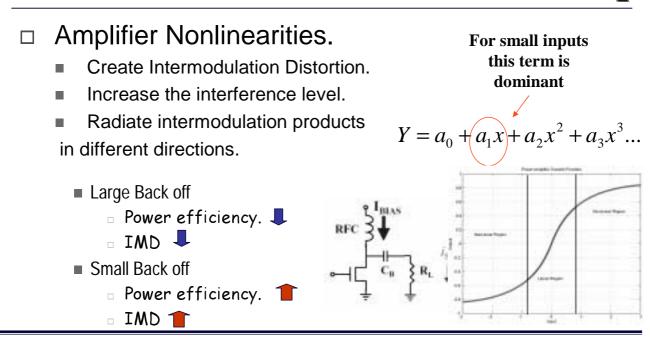
Fernando Gregorio

Fernando Gregorio

Introduction

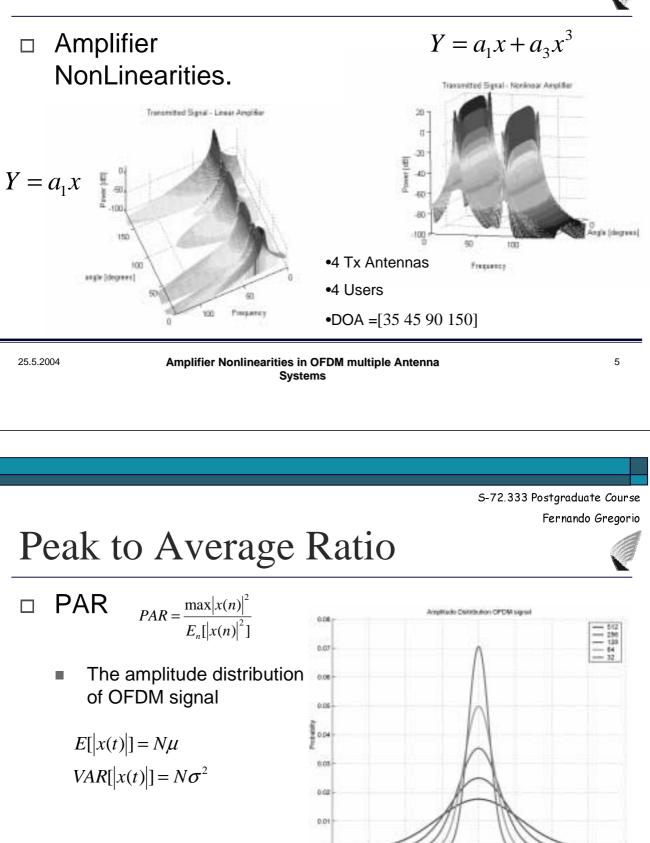
Array Antenna Systems

- □ Increase spectral efficiency.
- □ Reduce co-channel interference.
- Increase the reutilization factor.
- □ Increase the complexity.


OFDM

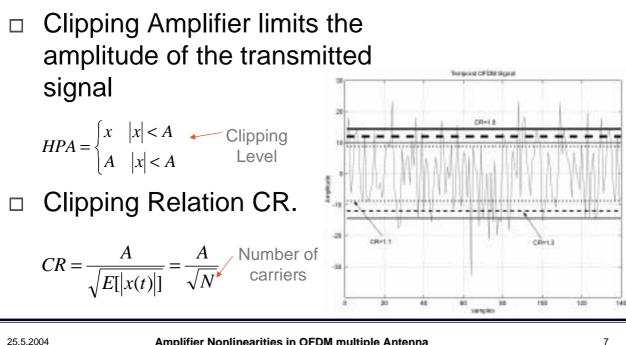
- □ High Bit Rate.
- Combat multipath fading.
- High Peak-to-Average-Power Ratio

Amplifier Nonlinearities in OFDM multiple Antenna Systems 3


S-72.333 Postgraduate Course Fernando Gregorio

Introduction

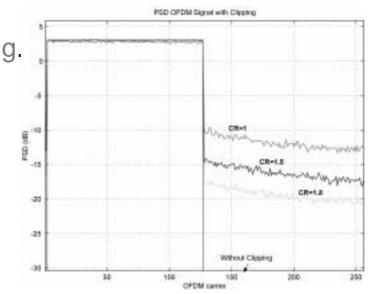
Fernando Gregorio



0 Actipitude

Fernando Gregorio

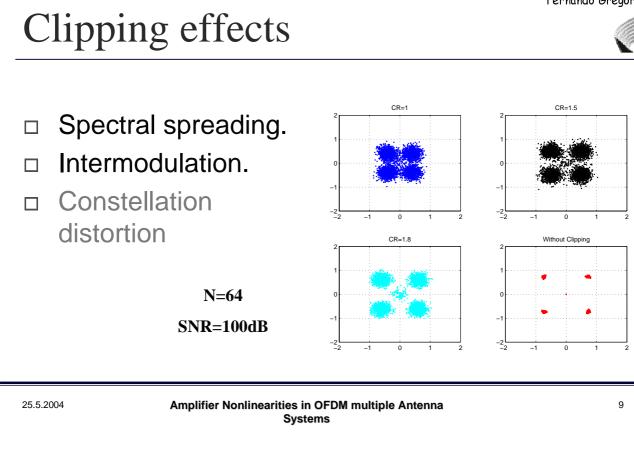
Clipping


Amplifier Nonlinearities in OFDM multiple Antenna Systems

1

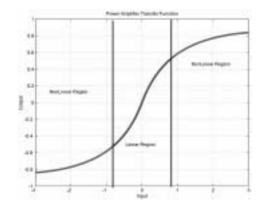
S-72.333 Postgraduate Course Fernando Gregorio

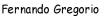
Clipping effects


- □ Spectral spreading.
- □ Intermodulation.
- Constellation

S-72.333 Postgraduate Course

Fernando Gregorio


Fernando Gregorio


Clipping effects

🗆 CR 🚺

- Spectral spreading is reduced.
- Constellation Distortion is small.
- Power amplifier have to work with big levels of input signals

Low efficiency region

Diversity in OFDM

- OFDM + MIMO
 - Higher Bit rate
 - Bigger Capacity
- Space Time Diversity
 - Delay Diversity.
 - Phase Diversity.

Promising results in MIMO OFDM systems without nonlinearities

- Cyclic Diversity.
- Multiple Antennas transmit delayed versions of the original signals.
 - Level signals are similar to conventional OFDM.
 - The restrictions in the PA linearity are maintained

25.5.2004

Amplifier Nonlinearities in OFDM multiple Antenna Systems 11

S-72.333 Postgraduate Course

Fernando Gregorio

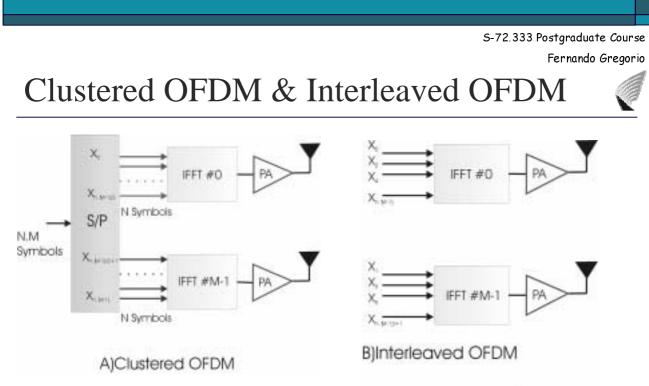
Linearity in the PA

Reducing the linearity restrictions in the PA

- Predistortion techniques.
- Coding or selective mapping.
- Clipping.
- Clustered OFDM

Fernando Gregorio

Clustered OFDM


- Split an OFDM symbol into group of subcarriers, which are processed, amplified and transmitted over separate antennas.
- The peak value for each block is reduced
 - Less spectral spreading
 - Less back off for each PA

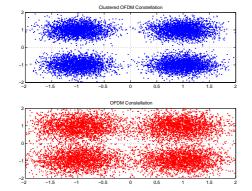
Ν	PAR _o	PAR _{c2}	PAR _{c4}
64	18dB	15dB	12dB
128	21dB	18dB	15dB

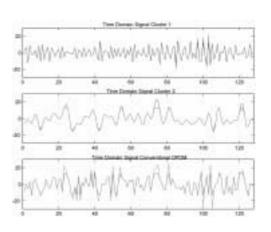
25.5.2004

Amplifier Nonlinearities in OFDM multiple Antenna Systems

13

Both techniques are feasible for OFDM multiple antenna Systems affected by nonlinearities in the PA

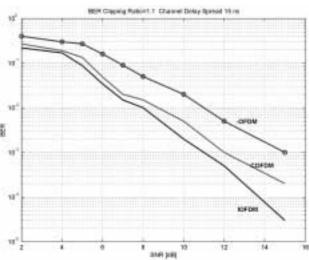

S-72.333 Postgraduate Course Fernando Gregorio Clustered OFDM & Interleaved OFDM 100 **COFDM** Automas 1 Vower Spectrum Negratude (#5) -100 0.3 0.4 D-5 11.E 0.8 0.9 0.2 -0.3 100 COFOR Automa 2 100 0.9 **IOFDM Antenna 1** Πē U.B D.9 **EXEDM Advenue** 0.2 0.3 0.1 0.4 Û.B 115 前音 6.7 0.9 Fingurer Interleaved OFDM : The sub carriers transmitted for each antenna are spread over the whole frequency bandwidth, maximizing the frequency diversity 25.5.2004 15 Amplifier Nonlinearities in OFDM multiple Antenna Systems S-72.333 Postgraduate Course Fernando Gregorio Simulations WLAN Implementation **Conventional OFDM** QAM Input Bits IFFT Insert Clustered OFDM Mappe 32 CP Interleaved OFDM Encode Parameters Insert QAM IFFT Sampling Frequency 20 MHz Mapper CP 32 Cyclic Prefix Length = 12 Clipping Ratio =1,2 Output Sits **Convolutional Encoder** Hard Viterbi Decoder Foundation & Vitorbi IFFT Remov Channel delay Spread = 15 MAG CP Decodel 32 DeMappe ns


Fernando Gregorio

Simulations

 Constellation CR=1.1 SNR=12 dB

25.5.2004


Amplifier Nonlinearities in OFDM multiple Antenna Systems 17

S-72.333 Postgraduate Course

Fernando Gregorio

BER

 CR=1.1
 Channel Delay Spread=15ns

Fernando Gregorio

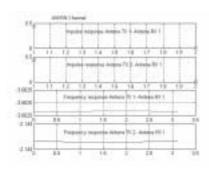
Simulations

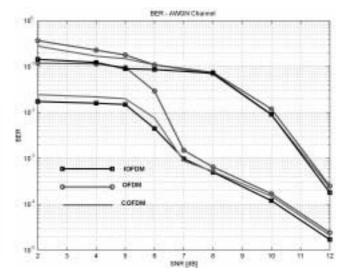
- BER
 - □ CR=2
 - Channel Delay
 Spread=15ns

25.5.2004

Amplifier Nonlinearities in OFDM multiple Antenna Systems

19


S-72.333 Postgraduate Course Fernando Gregorio


Simulations

BER

□ CR=1,1 , 2

AWGN Channel

Fernando Gregorio

Conclusions

- IOFDM and COFDM reduce the linearity restrictions in the PA.
- IOFDM has better performance in multipath channels than COFDM.
- Future Work : A beamforming structure can be added in order to reduce the IMD radiation.

25	5	20	٦N	Δ
20	.0	~ ~ `	50	-

Amplifier Nonlinearities in OFDM multiple Antenna Systems 21

S-72.333 Postgraduate Course

Fernando Gregorio

References

- Mattias Wennstrom, On MIMO Systems and Adaptive Arrays for Wireless Communication. Analysis and Practical Aspects, PhD Thesis, Uppsala University, Oct. 2002.
- Heiskala J. and Terry J., OFDM Wireless LANs: A theoretical and Practical Guide, Sams Publishing, 2002.
- J. Liberti, T. Rapaport, Smart Antennas for Wireless Communications, Prentice Hall, 1999.
- C. Hemmi,,"Pattern Characteristics of Harmonic and Intermodulation Products in Broad-Band Active Transmit Arrays", {\it IEEE Transactions on Antennas and Propagation}, Vol. 50, June 2002.
- Ochiai H. and Imai H., "On clipping for peak power reduction of OFDM signals", IEEE Global Telecommunications Conference 2000, Vol. 2, 2000.
- Tellambura C., "A Coding technique for reducing peak to average power ratio in OFDM," GLOBECOM 1998, Vol. 5.
- X. Li, L. Cimini, "Effects of clipping and filtering on the performance of OFDM", Proc. IEEE VTCi⁻ 97, Phoenix, May 1997, pp. 1634-1638.
- Stefan Kaiser, Spatial transmit diversity techniques for broadband OFDM systems, GLOBECOM 2000, San Francisco, USA, November2000, pp. 1824-1828.
- Armin Dammann, Ronald Raulefs and Stefan Kaiser, "Beamforming in Combination with Space-Time Diversity for Broadband OFDM Systems", ICC2002
- G.Stuber, J. Barry, S. McLaughlin, Ye Li, M. Ingran, And T. G. Pratt ,"Broadband MIMO-OFDM Wireless Communications", Proceedings Of the IEEE, VOL. 92, No. 2, Feb. 2004

- GLOBECOM '96. ,18-22 Nov. 1996 Pp. 703 707 vol.1
- A. N. Barreto "Transmit Antenna Diversity for OFDM-based W-LANs with a priori Channel State Information", Proceedings of International Zurich Seminar on Broadband Communications, 2002,pp.10-1 10-6.

Cimini, L.J., Jr.; Sollenberger, N.R., "OFDM with diversity and coding for advanced cellular Internet services", GLOBECOM '97., 3-8 Nov. 1997, Pp. 305 - 309 vol.1

D Cimini, L.J., Jr.; Babak Daneshrad; Sollenberger, N.R, "Clustered OFDM with transmitter diversity and coding",

Fernando Gregorio

Homework

 An Interleaved OFDM (IOFDM) system has better performance than Clustered OFDM (COFDM) in a multipath channel.

Why?

Justify.

25.5.2004

Amplifier Nonlinearities in OFDM multiple Antenna Systems 23