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Multiple-Input Multiple-Output (MIMO) Wireless Systems

1.1 What are MIMO systems ?

• A MIMO system consists of several antenna elements, plus adaptive signal 
processing, at both transmitter and receiver

• First introduced at Stanford University (1994) and Lucent (1996)

• Exploit multipath instead of mitigating it

1 Presentation
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1.2 Wireless channels limitations

Wireless transmission introduces:

Fading: multiple paths with different phases add up at the receiver,

giving a random (Rayleigh/Ricean) amplitude signal.

ISI:multiple paths come with various delays, causing intersymbol

interference.

CCI: Co-channel users create interference to the target user

Noise: electronics suffer from thermal noise, limiting the SNR.

1 Presentation
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Wireless channels limitations : summary
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1.3 MIMO Benefits :

• higher capacity (bits/s/Hz)

(spectrum is expensive; number of base stations limited)

• better transmission quality (BER, outage)

• Increased coverage

• Improved user position estimation

Due to :

� Spatial multiplexing gain : Capacity gain at no additional power 
or bandwidth consumption obtained through the use of multiple 
antennas at both sides of a wireless radio link

� Diversity gain : Improvement in link reliability obtained by                   
transmitting the same data on independently fading branches

� Array gain

� Interference reduction

1 Presentation
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Array gain principle :

The array gain is defined by the gain in mean SNR
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The output SNR is N times the input SNR
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Receiving data over N antennas :

1 Presentation
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2 SISO Vs MIMO

Capacity of SISO Systems (1 by 1)

At fixed time t, the SISO channel is an additive white Gaussian noise (AWGN) 
channel with capacity :

C(t) = log2(1 + SNRsiso(t)) Bit/Sec/Hz

where SNRsiso(t) is the received signal to noise ratio at time t :

SNRsiso(t) = 

+3dB of extra power needed for one extra bit per transmission !
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Capacity of MIMO systems

Note: we assume channel unknown at transmitter

where H is the M X N random channel matrix and ρ is the average

signal-to-noise ratio (SNR) at each receiver branch.

Capacity proportional to min of # TX and # RX antennas!
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Comparison : Average capacity of ideal MIMO systems

2 SISO Vs MIMO
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3 Spatial multiplexing

3.1 Principle

We send multiple signals, the receiver learns the channel matrix and inverts it to 
separate the data.

3 Spatial multiplexing
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3.2 Impact of channel model

MIMO Performance is very sensitive to channel matrix invertibility.

The following degrades the conditioning of the channel matrix:

Antenna correlation caused by:

- Small antenna spacing, or

- Small angle spread

Line of sight component compared with multipath fading component :

- Multipath fading component, close to random identical independent 
distribution, is well conditioned

- Line of sight component is very poorly conditioned.

3 Spatial multiplexing
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MIMO spatial multiplexing in Line-of-sight

The system                                       is near rank one (non invertible) !!

Spatial multiplexing requires multipath to work !!       
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3.3 V-BLAST/ D-BLAST Algorithms

(Bell-labs LAyered Space-Time architecture)
Belong to the class of Layered Space-Time Coding

• In D-BLAST, output of coders can be applied to the transmit

antennas in turn          Diagonal LST coding (D-BLAST)

• In V-BLAST, output of coders operate co-channel with synchronized

symbol timing           Vertical LST coding (V-BLAST)

3 Spatial multiplexing
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4 MIMO Receiver Design

4.1 Linear receivers for BLAST (Zero-Forcing, MMSE)

Zero-Forcing receiver

Zero Forcing implements matrix (pseudo)-inverse (ignores noise 

enhancement problems) :

Where :  
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MMSE receiver

The MMSE (Minimum mean square error) receiver optimizes the 
following criterion:

W = argmin  {E |W*x – s| ²}

We find:

Ŝ = H*(HH* + Rn)-1 x

where Rn is the noise/intf covariance.

This offers a compromise between residual interference between input

signals and noise enhancement.

4 receiver design
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4.2 Non linear receiver (ML, SIC)

Maximum likelihood receiver:

• Optimum detection

• Exhaustive search. No iterative procedure for MIMO.

• Complexity exponential in QAM order and N.

Maximum Likelihood Solution:    Ŝ = argmin Ix – Hsl²

where s is searched over the modulation alphabet (e.g. 4QAM, 16QAM..)

SIC : Successive Interference Canceling

NS
S

hh
hh

x
x

+























=













::::
..
..

:
2

1

2221

1211

2

1

4 receiver design

SMARAD / Radio Laboratory 20

4.3 Performance comparison

BLAST zero-forcing vs. V-BLAST (SIC) vs BLAST-ML (2x2)

4 receiver design
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BLAST zero-forcing vs. V-BLAST (SIC) vs BLAST-ML (4x4)
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5 Space-Time Coding (Transmit/Receive Diversity)

Uses Transmission diversity to combat the detrimental effects in wireless fading 
channels.

Three types:

•Trellis space time codes : complex but best performance in slow fading 
environment (indoors).

•Layered space time codes : easy to implement but not accurate due to error 
propagation effect.

•Block space time codes : best trade-off of performance vs complexity.

5 Space-Time Coding (Transmit / Receive Diversity)
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Comparison of Performance: 2x2 STCBC and SISO

5 Space-Time Coding (Transmit / Receive Diversity)
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Comparison of Performance: V-BLAST & STCBC in MIMO-OFDM

5 Space-Time Coding (Transmit / Receive Diversity)
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Summary : Space-Time Coding & V-BLAST

Space-Time Coding

• Space-time codes provide spatial diversity gain without requiring channel

knowledge in the transmitter

• Space-time codes do not provide array gain (due to lack of channel knowledge 
in the transmitter)

• Orthogonal space-time codes decouple the vector detection problem into scalar 
detection problems -> drastically simplified algorithms

V-BLAST

• Performs well when channel estimates are good

• Degradation due to channel estimation errors is fairly high

• Successive Interference Cancellation (SIC) makes for low complexity

• Danger of error propagation that is inherent of a SIC scheme

• Inferior to STBC due to lack of diversity gain at the transmitter

5 Space-Time Coding (Transmit / Receive Diversity)

SMARAD / Radio Laboratory 26

6 Conclusion

6 conclusion

MIMO extremely promising but more validation work are needed :

Algorithms:

- Unifying diversity and multiplexing approaches

- Optimum loading

Low complexity receivers

- Optimum receivers (ML) are too complex

- Simple receivers (linear) give unacceptable performance at high MIMO loading

System gain evaluation

- Real gains depend on deployment scenario

- Beamforming and MIMO needs to be compared on a system level basis
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Homework

1. Explain the principle of spatial multiplexing.

2.    Describe briefly what happens in MIMO spatial multiplexing if there is 
just line of sight  without multipath ? 


