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1. Characterization of the linear time-variant channel

The transmission channel (radio path) of a radio communication system is
in most cases a multipath channel. When changes take place in the propagation
environment e.g. the radio stations are mobile, reflectors and scatterers are
moving, or the medium itself (troposphere, ionosphere) is changing, then the
channel response will also change as a function of time, the radio path is fading.

If the changes are slow so that the channel is almost constant under the
duration of a single data symbol or even under the duration of a frame
containing hundreds of symbols, the channel can be characterized as quasi-
invariant, and the channel response to one symbol or one frame can be
calculated using the formulas of time invariant systems. In the transmission of a
long message the channel is, however, gradually changing and the changes can
be represented e.g. with the joint density function of the multipath channel tap
path amplitudes and delays and their correlation functions.

When the channel is significantly changing during the transmission of a
data frame new channel representations must be used. The features of these
must also be known, so it can be decided when the channel can be modeled as
quasi-invariant.

The impulse response h(t) or the transfer function H(f), which is the
Fourier transform of the impulse response, fully describes the linear time-
invariant system. In the characterization of linear time-variant systems several
new system functions are introduced. Their physical interpretation is not always
easy, and their conception is rather laborious.

Hereafter we will use the abbreviations LTV-channel for the Linear
Time-Variant channel and LTI-channel for the Linear Time-Invariant
channel.

Bello has developed the theory of LTV-system already 1963 [1] for
characterization of the troposcatter channel. Good descriptions are also
included in references [2] and [3]. In Fig. 1 the approach used here is presented.
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Fig. 1

                                                                                                                                  
[3] D.Parsons: The mobile radio propagation channel. London 1992, Pentech Press, 316p.
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1.1 Calculation of LTV-channel signal response.

The calculation of the signal response is first presented for the discrete
LTV-multipath channel. The result is then generalized for an arbitrary LTV-
channel. The signal analysis is performed for complex low-pass signals.

Fig. 2 shows the behavior of the LTV-multipath channel in an idealized
situation. The idealisation means e.g. that the signal passes undistorted over all
paths. The signal duration is so short that the signals over different path do not
overlap at the receiver. The input signal is a narrow pulse, which is transmitted
at the time instants  t1, t2, t3, and t4. The channel has of course some minimum
delay, before the response starts. On the first time instant t1 the channel is a
three-path channel and the pulse is attenuated individually on each path but the
pulse shape remains unchanged. The time-variant nature of the channel can be
seen from the varying number, attenuation, and delay of the paths at different
time instants. From this can be concluded that the multipath channel response
depends both on the time of arrival of the input pulse (time) and of the time
past since that (delay). The impulse response is a function of both time and
delay, while in the time-invariant channel it is only a function of delay.

The input and output signals are real in the figure but generally the output
signal is complex when low-pass representation of the system is used. Also the
input signal can be complex. If the delay difference between the paths is less
than the signal duration, the path responses will overlap and the response will
be very complex and the multipath structure cannot be directly observed.

Complex low-pass system representation of the signals is used. The
physical band-pass input and output signals are thus:
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where fc is the carrier frequency in use.
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The time-variant channel pulse response at
four different time instants
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From Fig. 2 can be seen that the physical output signal of the LTV-

multipath channel can be expressed as

r t t s t tn n
n

M t
( ) ( ) ( )

( )
= −∑

=

−
α τd i

0

1
(3)

where
- αn(t) is the gain of the n:th propagation path as function of time,
- τn(t)  is the propagation delay of the n:th propagation path as function of

time,
- M(t) is the number of propagation paths as function of time.

Insertion of  Eq. (1) in Eq. (3) gives:
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In the last form of  Eq. (4) the complex low-pass output signal can be
recognized:
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Eq. (5) can also be written as:
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where ⊗  denotes convolution and 
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From this follows the impulse response of the LTV-multipath channel:

h t h t tn n
n

M t
( , ) ( ) ( )

( )
λ δ λ τ= −∑

=
d i

0
(8)

where h(λ,t) is the response at time t to an impulse arrived λ seconds earlier.

Eqs. (5) - (8) are valid for a discrete multipath channel. In some radio
channels e.g. the troposcatter channel a time-continuous impulse response is a
more adequate model. Then the signal response is calculated with a generalized
convolution integral:

w t h t z t d( ) ( , ) ( )= −z
−∞

∞
λ λ λ (9)

The response of the multipath channel to a sinewave
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is obtained by inserting the input signal in Eq. (10) in Eq. (5),  which gives
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A simple example will show that the path delay variation and not the
amplitude variation will mainly determine the dynamic characteristics of the
LTV-channel.

Example 1. In Fig. 3 it is assumed that the reflection coefficient is -1. The
geometrical length of the propagation paths is calculated using the right-angled
triangles and the image principle. The path amplitude gains and delays follow
directly from the length of the propagation paths.

The logarithmic amplitude of the received signal as a function of time is
calculated assuming the carrier frequency 2 GHz and the speed of the receiver
15 m/s. The geometrical values are given in Fig. 3.
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The graph in Fig. 3 shows the logaritmic signal amplitud as function of
time assuming first that only the delays depend on time, and then that both
delays and gains are changing. In this simple situation the time dependence is
very regular, which is nearly equal under both assumptions. From this can be
concluded that the behavior is determined almost solely by the delay changes
and the changes in path gains only have minor effects. This can be generalised
to almost all radio channels. The reason for this behaviour is of course that
delay changes are multiplied by the carrier frequency in the exponential func-
tion in Eq. (11).

Example 2. The mobile channel can in a small area be modeled with the
impulse response
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This is a discrete M-path channel where the complex path gains hk and the
delays τk do not change with time. As a consequence of the constant speed each
path has its own constant Doppler-shift

ν αk c k
v

c
f= cosd i (13)

where v on speed of the mobile station, c is the speed of the radio wave, fc is
the carrier frequency, and αk is the angle between the k:th propagation path and
the mobile station velocity vector. In reality hk, τk, αk, and M are functions of
time but in the small region where the mobile station moves under one
transmission frame they are approximately constant. The randomness of this
channel appears so that the model parameters after some few frames have
obtained new values.
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3.2.2 The system functions of a LTV-channel

The basic system function of a deterministic LTV-channel and of a sample
function of a random LTV-channel is time variant impulse response h(λ,t)
described  above, also known as the channel input delay spread function.

Other frequently used system functions are:

• the time-variant channel transfer function:

H f t h t h t j f d( , ) ( , ) ( , ) exp= = z −
−∞

∞
λ λ λ π λ λk p a f2 (14)

which is obtained by Fourier-transforming the impulse response with
respect to the delay variable λ. It describes the complex envelope of the
output signal when the input signal is ej2πft.

• the channel output Doppler spread function:

D f H f t H f t j t dtt( , ) ( , ) ( , ) expν πν= = z −
−∞

∞k p a f2 (15)

which is obtained by Fourier-transforming the transfer function with
respect to the time variable t, and which describes the channel frequency
response on the frequency f + ν, when the input signal is ej2πft.

• the delay-Doppler spread function

S h t h t j t dtt( , ) ( , ) ( , ) expλ ν λ λ πν= = z −
−∞

∞k p a f2 (16)

is obtained by Fourier-transforming h(λ,t) with respect to the time variable
t or by taking the inverse Fourier-transform of the Doppler-spread function
with respect to frequency f. It gives the complex gain of the channel on the
delay interval τ τ+ d  and the  Doppler-shift interval ν ν+ d .

The Fourier-transform relations of these four system functions are shown in
Fig. 4.  In addition four other dual system functions can be defined.
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Example 2 continues
The instantaneous system functions of this channel model are:
• the time-variant impulse response (model definition):
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• the time-variant transfer function:
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• the output Doppler-spread function:
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• the delay-Doppler-spread function:
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In Fig. 5 the impulse response, amplitude frequency response, and  the delay-
Doppler-spread functions are shown for a 2-path channel with the parameter
values:
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From the figure or from Eqs. (17) - (20) it appears that the channel impulse
response dependence of time can be seen only from the phase behaviour of the
complex path gain, which is a linear function of time (In the figure drawn
modulo 2π). In the transfer function it can be seen as a gliding of the
transmission minimum through the signal bandwidth. the delay-Doppler-spread
functions contains impulses which tell the delay and Doppler-shift of each path.
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Fig. 5
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