

Contents

- Background
- Problem Aspects and Definition
- Radio Link Establishment and Constraints
 - Interference Constraints
 - Propagation Constraints
- System Capacity
- Radio Resource Allocation Algorithm
- QoS and User Behavior models

Background

- Resource Management Problem
 - Operator Perspective
 - Operator: needs maximum number of customers
 - Maximum number of users = Capacity of the system
 - Consumer Perspective
 - User: needs best Quality of Service (QoS)
- Capacity is a function of QoS requirements
 - Services requiring more resources per user limits the capacity of the system
- Resource Management Problem:
 - "Design systems where the number of users is maximized for a given QoS requirement"

Problem Aspects

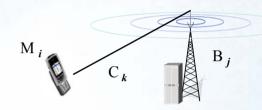
- The wireless network design problem
 - Design the fixed network infrastructure
 - How many base stations?
 - Where to place them ?
 - What fixed network capacity has to be provided for different base stations?

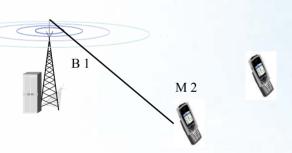
- The radio resource allocation problem
 - Given an infrastructure design.
 - How should the wireless resources be allocated to meet the instantaneous demand of the users and mobile terminals moving around in the network?

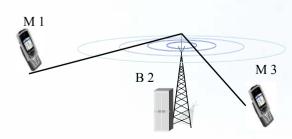
Definitions

- Active mobile terminals
 - A mobile requiring a connection is an active mobile terminal

$$\Rightarrow$$
 M = {1, 2, ..., *M*}
• *M* is a stochastic variable


- - Its distribution depends on traffic call intensity, duration of user session and the system behavior
 - Terminals become active independently
 - Two Dimensional Poisson Point Process
 - They are not completely dependent, since they are using the same set of channels
 - Process rate ω (active terminals/ area unit)
- Radio Access Ports (base stations)
 - The mobile terminal is served by access port. The number is limited

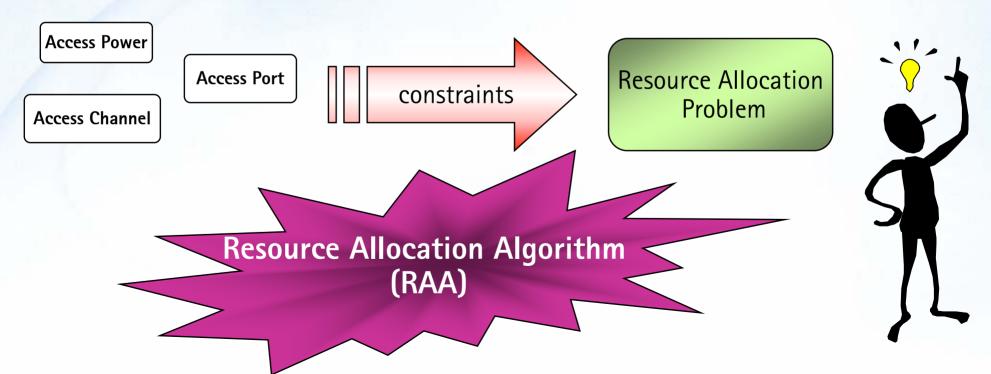

$$\Rightarrow$$
 B = {1, 2, ..., *B*}


- System Channels (waveforms)
 - System channels are numbered from the following set

$$Arr$$
 C = {1, 2, ..., C}

• These channels are available for establishing links between access ports and terminals

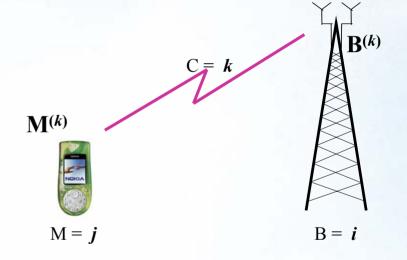
Radio Link Establishment


- To establish radio links, each terminal has to assign
 - An access port (base station) from set B
 A channel from set C

 - A transmitter power for the access port and the terminal

Radio Link Constraints

- Limited number of access channels (C)
- Limited number of access ports (B)
- Constrained power assignment
- Interference caused by the access ports and terminals


Notations

- $M^{(k)} = \{ j : \text{ terminal } j \text{ has been assigned channel } k \}, k = 0,1,2, ,C$
- $B^{(k)} = \{i: RAP \ i \text{ has been assigned channel } k\}, k = 0,1,2, ,C$

$$\bigcup_{k=0}^{C} M^{k} = M$$

$$\bigcup_{k=0}^{C} B^{k} = B$$

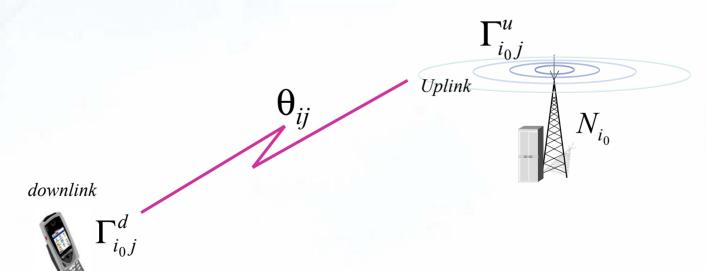
$$\bigcup_{k=0}^{C} B^k = B$$

- The sets $\mathbf{M}^{(k)}$ are usually disjoint
 - Each terminal uses only one channel at a time
- The sets $B^{(k)}$ are joint
 - RAP may serve multiple terminals using different channels

Propagation Constraints

- Link Gain
 - Between transmitters and receivers
 - G_{ij} is the power gain of the channel between port j and terminal i
- The received power in the receiver j, $P_{rx,j}$ can be written as $P_{rx,j} = P_{tx,i} G_{ij}$ Where $P_{tx,j}$ is the transmitter power at transmitter j.
- The link gain matrix

$$G = egin{bmatrix} G_{11} & G_{12} & G_{1M} \ G_{21} & G_{22} & G_{2M} \ G_{B1} & G_{B2} & G_{BM} \end{bmatrix}$$


- This matrix describes the instantaneous propagation conditions in the system
- G_{ij} 's are assumed to be random variables

Interference Constraints

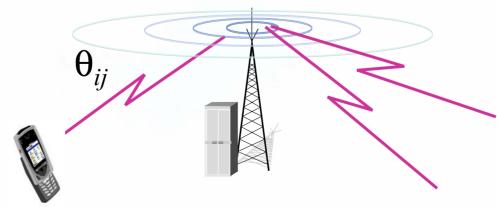
- SIR
- Signal to interference + noise ratio
- Assuming only one channel in the system

$$\Gamma_{i_0 j}^{u} = \frac{P_j G_{i_0 j}}{\sum_{m \neq j} P_m \theta_{0, m} G_{i_0 m} + N_{i_0}} \ge \gamma_j^{u}$$

$$\Gamma_{i_0 j}^d = \frac{P_j G_{i_0 j}}{\sum_{b \neq j} P_b \theta_{0, b} G_{i_0 b} + N_j} \ge \gamma_j^d$$

 θ_{ij} Cross correlation between channel i and j

Interference (2)


Using orthogonal channels

• C consists of orthogonal channels

$$\theta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- The interference from other channels can be neglected given that the channels are orthogonal
 - Interference summations are taken over all the terminals using the same channel c only

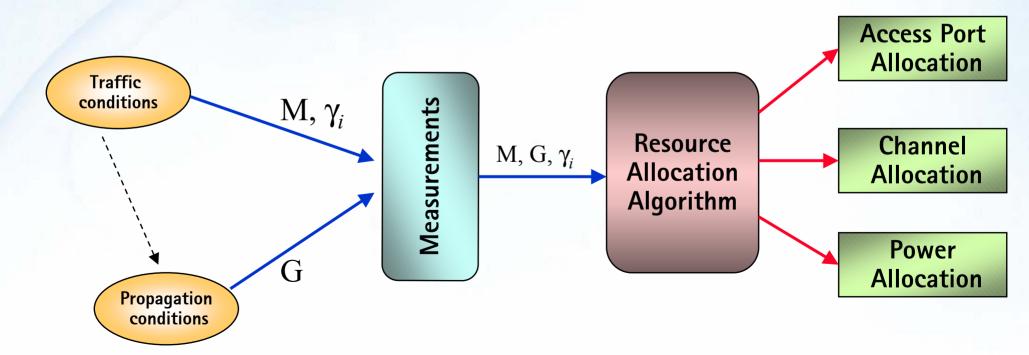
$$\Gamma_{i_0 j}^{u} = \frac{P_j G_{i_0 j}}{\sum_{\substack{m \neq j \\ m \in \mathbf{M}^{(c)}}} P_m \theta_{0,m} G_{i_0 m} + N_{i_0}} \ge \gamma_j^{u} \qquad \Gamma_{i_0 j}^{d} = \frac{P_j G_{i_0 j}}{\sum_{\substack{b \neq j \\ b \in \mathbf{B}^{(c)}}} P_b \theta_{0,b} G_{i_0 b} + N_j} \ge \gamma_j^{d}$$

System Capacity

- System Capacity = Largest number that can be handled
 - ullet It might not be possible to satisfy the requirements for all M terminals
- Measuring System Capacity
 - Definition: Y = channels available at a given instant of time
 - Y is the number of available channels in the system at given instant of time
 - » Random Variable
 - C is the total number of channels in the system
 - » Constant
 - Definition: Z = failed assignment
 - Terminals that cannot be assigned at a given instant of time because of unavailability of free system channels
 - Z = M Y
- Assignment Failure Rate ν

$$v = \frac{E(Z)}{E(M)} = \frac{E(Z)}{\omega A}$$
 where ω = active terminals / area unit (**traffic load**)
$$\mathbf{A} = \text{Cell Area}$$

Instantaneous Capacity


For large ωA

• The assignment failure rate $(v) \cong$ the probability that it is not possible to provide a combination of channel and access port to some randomly chosen terminals at some given instant of time without violating the interference constraints

- Definition
 - Threshold failure rate v_0
 - Instantaneous Capacity $\Rightarrow \omega_*(v_0) = \{ \max \omega : v \le v_0 \}$
 - \bullet The maximum allowed traffic load in order to keep the assignment failure rate below a threshold ν_{0}

RAA Design

- User behavior model
 - Users can request many services characterized by various sets of QoS parameters like
 - Bit Rate, Error Probabilities, Delays
- QoS model
- **Snapshot Analysis**

Dynamic & Static RAA

- Dynamic RAA
 - Adapts to
 - Propagation conditions change (mobile terminals)
 - Traffic conditions change
 - Problems
 - Constant recalculation and updating further complicates the resource assignment problem
 - Measurements not always reliable
 - Example
 - Use measured SIR to predict future SIR
 - Practicality
 - Needs to track changes in propagation conditions and user traffic
- Static RAA
 - Based on priori knowledge (done at planning stage)
 - Average propagation conditions in certain areas
 - Average traffic load conditions
 - Given QoS requirements

QoS Model and User Behavior

3G (UMTS) Bearer Service Classes

Service Class	Typical Applications	Service Functional Characteristics	
Conversational (Real Time)	Voice	Preserve time relations between entities	
		 Stringent preservation of conversational patterns (low delay) 	
Streaming (Real Time)	Video/Audio streams	Preserve time relations between entities	
Interactive Best Effort	Web-browsing	•Request/Response pattern	
		Preserve delay (low error rate)	
Background Best Effort	File transfer, e-mail	Not time critical	
		Preserve payload (low error rate)	

QoS Parameters (in 3G)

- Service Attributes
 - Maximum data rate
 - The highest data rate that a user could expect
 - Maximum packet/message size
 - Guaranteed data rate
 - The lowest data rate that a user is guaranteed
 - Transfer delay
 - The delay packet/message spends between access ports
 - Priority
 - Relative importance of different messages
 - Residual bit error rate
 - The undetected error rate after the delivery of the information over the service interface

QoS Parameters (Example)

Some 3G (UMTS) Service Attribute/Parameter Ranges

Traffic Class	Conversational	Streaming	Interactive	Background
Max bitrate(kbps)	<2000	<2000	<2000-overhead	<2000-overhead
Max SDU size(byte)	<1500	<1500	<1500	<1500
Guaranteed bit rate	<2000	<2000		
Transfer delay(ms)	80 - max value	500 - max value		
Priority	1,2,3	1,2,3	1,2,3	1,2,3
Residual BER	5*10 ⁻² , 10 ⁻² , 10 ⁻³ , ,	5*10 ⁻² , 10 ⁻² , 10 ⁻³ , , 10 ⁻⁴ , 10 ⁻⁵ , 10 ⁻⁶	4*10 ⁻³ ,10 ⁻³ , 6*10 ⁻⁸	4*10 ⁻³ ,10 ⁻³ , 6*10 ⁻⁸

Service Availability (QoS)

- Service denial probability
 - Probability that a user is denied to begin a session with a bearer service due to resource shortage
- Service interruption probability
 - Probability that a user is forced to terminate a session with bearer service due to resource shortage

QoS Models (Examples)

- Voice (Telephony) QoS and traffic model
 - Residual message error rate < 0.01
 - End-to-end delay fixed and not more that 80-100 mm
 - All calls have an exponentially distributed duration with average length of $1/\mu$ (time/call)
 - Relative traffic load $\rho = \lambda/\mu$: how many new calls are expected during the ongoing call. (Erlang)
 - Service denial probability referred to as Blocking probability
 - Service interruption probability referred Call dropping probability
- Web browsing QoS and traffic model
 - Short messages sent uplink from the terminal at random instant to request rather large files to be downloaded into the terminal
 - Critical QoS characteristics = response time
 - The undetected error rate at the user level < 10⁻⁸
 - Classical model: Poisson distributed for the packet interval time and the size of requested files

QoS and Network Performance

- The QoS-SIR mapping => (Number of users model)
 - Is it possible to map various QoS requirements to a simple link quality measure?
 - In a simple case => YES, we can map QoS with SIR
 - This would be difficult when:
 - » Considering the temporal aspects (e.g., message delay in non-real time)
 - » Considering the temporal variations in service availability due to traffic fluctuations and user mobility
- User behavior and service mix => (User behavior model)
 - What will be the QoS-profile requested for a certain use r and what is the required service availability?
 - Random models used.
 - A user, with some probability belongs to a certain class of users with identical QoS profiles.
 - The probability distribution of class membership is usually referred to as service mix.

Reference

• [1] Jens Zander and Seong-Luyn Kim: Radio Resource Management for Wireless Networks, Artech House 2001,

Exercise

In a wireless network with two access ports and three terminals, the gain matrix is found to be

$$G = \begin{pmatrix} 0.02 & 0.0005 & 0.05 \\ 0.002 & 0.01 & 0.001 \end{pmatrix}$$

The transmitter power is constant (=1) and the noise power N is 0.001 for all terminals. Two orthogonal waveforms are available.

Determine the optimal access port and channel assignment and the resulting SIR.

Thank you!

