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Channel probabilities

Information theory exploits a type of channel model which
consists of probabilities related to the input and output
symbols of the channel
These probabilities may be derived using modulation
theoretical studies<

P(x,y)
x y

P(x,y) = P(y|x)·P(x)
(4.1.1)

P(x) a priori probability of input
symbol
P(y|x) transition probability from
input to output.
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Mutual information

Received symbols give information about the transmitted
symbols.
In reasoning about the input symbol the probability
structure of the channel should be exploited. Here the
concept of mutual information is useful.
Assume the symbols x are one of the set {aÿþþ}. (ÿ=1,...,L)
The event y=bÿ' (ÿ'=1,...,L') give information of the event x=aÿ

I(aÿ , bÿ') = log[P(x=aÿ|y=bÿ' )/P(x=aÿþ)] (4.1.2)
Here P(x|y) is the a posteriori probability. It can be
computed using the Bayes rule:

P(x|y) = P(y|x)·P(x)/P(y) (4.1.4)
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Binary symmetric channel

Example 4.1. A sagittal diagram is used to describe the
binary symmetric channel (BSC).

The channel has u as input and v as output.
Both input and output symbols are binary (0
or 1). An error probability ε is assumed.
BSC comes naturally in an FSK modem.
(V.21 or V.23)
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Computation of mutual information for BSC

P(0|1) = ε
P(1|1) = 1- ε

Assume P(0) = P(1) = 0.5. Assume ε = 1/65536 = 2-16. Then
I(1,1) = I(0,0) = log(2·(1- ε)) » 1,0 bits
I(1,0) = I(0,1) = log(2·ε) = -15 bits. (4.1.5)

Without errors about 1 bit of information is conveyed. If an
error happens much negative information is received.
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Average mutual information

Mutual information is a random variable. Find its average
I(U,V) = Σ Σ P(u,v)·log[P(u|v)/P(u)] (4.1.6)

u v
For P(u|v) = 1 and assuming same alphabet for input and
output I(U,V=H(U).
Average mutual information can be expressed as
difference of two entropy functions:
I(U,V) = -Σ Σ P(u,v)·log[P(u)] - {-Σ Σ P(u,v)·log[P(u|v)]}

= H(U) - H(U|V), (4.1.7)
The average mutual information is seen equal to the
entropy of the source from which the average equivocation
H(U|V) of the observation is subtracted.
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Properties of average mutual information

I(U,V) is non-negative:
- I(U,V) = log(e)·Σ ΣP(u,v)·ln[P(u)/P(u|v)]

< log(e)·Σ ΣP(u,v)·[P(u)/P(u|v)- 1] (4.1.8)
= log(e)·[Σ ΣP(u)·P(v) - Σ ΣP(u,v)]
< 0,

Equality applies here whenever U and V are statistically
independent.
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Channel capacity

Capacity of a channel may be defined as the maximal
value of the average mutual information with respect to the
choice of the probabilities of the source alphabet.
We assume that the channel is discrete and memoryless.
Denote: P(aÿþ) = Qÿ , P(bÿ '|aÿþ) = P(ÿ ' |ÿ). Define

C = Max {Σ Σ Qÿ ·P(ÿþ'|ÿ)·log[P(ÿþ'|ÿ)/(Σ Qÿ "·P(ÿ '|ÿ "))]}
Qÿ ÿ ',ÿ ÿ " (4.1.9)
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BSC capacity

Set the binary alphabet 0,1 equally probable. For error
probability ε

C = 1 - � (ε), (4.1.10)

The value of the capacity is 1 for ε= 0 or 1 and 0 for ε = 0.
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4.2. Converse of the coding theorem
It is easier to prove the converse: For the information rate
higher than the channel capacity the error rate has a
positive lower bound, in fact it is very high.
A discrete source produces symbols [u1, u2, ... uK]

HK(U) = H(UK)/K = -(1/K)· Σ p(u)·log[p(u)] (4.2.1)
u

For a stationary source this entropy decreases
monotonously and has the limit H∞(U), kun K → ∞.
Now define the average probability of error for a sequence
of length K

K
<Pe> = (1/K)· Σ Pe,k (4.2.2)

k=1
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Proof of the converse

Assume that the input and output alphabet am of the
channel are the same: The probability that the input and
output differ

M
Pe = Σ Σ P(u,v). (4.2.3)

u=am v≠u
Then the following inequality is true:

Pe·log(M-1) + � (Pe) > H(U|V). (4.2.4)
This sets a lower bound to the error probability Pe which is
determined by the equivocation H(U|V) of the channel. The
lower bound may be found by solving the nonlinear
inequality.
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Proof continued

Write out the equivocation
H(U|V) = Σ Σ P(u,v)·log(1/P(u|v)) + Σ P(u,v)·log(1/P(u|v))

v u≠v v,u=v (4.2.5)
Subtract from this the left side of eq. (4.2.4).

H(U|V) - Pe·log(M-1) - � (Pe)=

Σ Σ P(u,v)·log{Pe/[(M-1)·P(u|v)]} +Σ Σ P(u,v)·log[(1-Pe)/P(u|v)]
v u≠v v, u=v

Now apply the logarithmic inequality
< log(e)· {Σ Σ P(u,v)·[Pe/((M-1)·P(u|v))-1]+

v, u≠v
+ Σ P(u,v)·[(1-Pe)/P(u|v) -1]}
v, u=v
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Proof continued #2

= log(e)·{[Pe/(M-1)]· Σ Σ P(v) - Σ Σ P(u,v) +
v u≠v v u≠v

+ (1-Pe)· Σ P(v) - Σ P(u,v)}
v v, u=v

= log(e)·[Pe - Pe + (1-Pe) - (1-Pe)]
= 0, (4.2.6)

QED.
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Interpretation of equivocation upper bound
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Upper bound of equivocation for sequences

We have to prove the following:
<Pe>·log(M-1) + � (<Pe>) > H(UK|VK)/K, (4.2.7)

where Pe is defined in (4.1.13). Setting UK = {U1×U2×...× UK}
H(UK|VK) = H(U1|VK)+H(U2|U1×VK)+...+H(UK|U1×U2×...×UK-1×VK)

K
< Σ H(Uk|Vk). (4.2.8)

k=1
Entropy grows when conditioning is reduced.
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Proof for sequences continued

Use inequality (4.2.4) for the right side of (4.2.8) divided by
K:

K
Σ H(Uk|Vk)/K < Σ [Pe,k·log(M-1) + � (Pe,k)]/K

k=1
K

< <Pe>·log(M-1) + [ Σ � (Pe,k)]/K (4.2.9)
k=1

where the right side follows from convexity of � (.).
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Model for a digital communication system

Source Channel coding

Sink
Channel
decoding

Channel

u

v

x

y
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Data processing theorem

The channel model indicates following probabilistic
properties of the source sequence u = [u1, u2, ..., uK] within
the definition space UK×XN×YN×VK .
The output sequence of the channel y = [y1,y2,..., yN] is
inde- pendent of the source u when the channel input x =
[x1, x2,...,xN] is given.
The input sequence of the sink v = [v1,v2,...,vK] is
independent of the sequences u or x when the channel
output y is given. These properties mean simply that there
are no other connections between the quantities in the
digital channel model than those indicated in the picture,
The channel is modeled with the mutual information I(x,y)
while the source and sink are modeled with H(U) and H(V).

Seppo J. Halme 24.10.00

S3405a.PRZ 18



Data processing theorem #2

Following inequality applies
I(UK;VK) < I(XN;YN) (4.2.10)

Proof: We start from the definitions
I(UK×XN;YN) = I(UK;YN) + I(XN;YN|UK) (4.2.11)
= I(XN;YN) + I(UK;YN|XN)

Because I(UK;YN|XN) = 0 ,
I(UK;YN) = I(XN;YN) - I(XN;YN|UK) < I(XN;YN) (4.2.12)

Similarly study I(UK;YN×VK) and exploit the fact that
I(UK;VK|YN) = 0 to lead to (4.2.10).
The conclusion drawn from the data processing theorem is
that any data processing on the transmission path
decreases the mutual information and thus deteriorates
performance.
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Putting together (4.2.7) ja (4.2.10) we get
<Pe>·log(M-1) + H (<Pe>) > � (UK|VK)/K

= HK(U) - I(UK;VK)/K (4.2.13)
> HK(U) - I(XN;YN)/K,

Here HK(U) = H(UK)/K.
For a discrete memoryless channel the capacity per symbol
is defined by I(XN;YN) < N·C, so that

<Pe>·log(M-1) + � (<Pe>) > HK(U) - (N/K)·C (4.2.14)

Letting K → ∞ we obtain the converse of the coding
theorem:

<Pe>·log(M-1) + � (<Pe>) > H∞(U) - (τs/τc)·C, (4.2.15)

where τs is the duration of the source symbol and τc that of
the channel symbol.

Converse of the channel coding theorem
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Comments on converse of coding
theorem

For source rate higher than the capacity of the channel the
error probability has a positive lower bound.
In fact the error probability in such case is very high.
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