

outline

background & overview

mac & phy

wlan management

security

WLAN

benefits □ flexibility & mobility □ installation \Box scalability disadvantages distance □ security □ performance

IEEE 802.11a

approved in 1999

frequency range

□ 5.15 - 5.825 GHz

□ low operational distances (LOS environment)

modulation

□ OFDM system with 52 subcarriers

□ BPSK, QPSK, 16-QAM, 64-QAM

data rates

□ 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s

forward error correction with convolutional coding
 coding rates 1/2, 2/3, 3/4

IEEE 802.11g

- approved in 2003
- higher operational distances
- frequency range
 - □ 2.4 2.4835 GHz
- physical layer same as in 802.11a
- compatible with 802.11b devices

mac

is a logical entity that coordinates medium access

provides framing operation and interaction between stations and access points

mac

- different network topologies
 IBSS, ESS
- provides two coordinated functions for medium access
 - Distributed
 Coordination
 Function
 - Point
 Coordination
 Function

mac

- 802.11 divides phy into plcp and pmd layers
 plcp maps the mac frames suitable for different mediums
- mac is the same for all versions

plpc = physical layer convergence procedure, pmd = physical medium dependent

•address: from, to, fragment, bssid

•type: control, data, management

•retry: retransmission

•FCS: 32-bit CRC

			_		and general na		
frame control	duration	DA	SA	BSSID	sequence control	frame body	FCS

frame control	duration	RA	ТА	FCS				

management frame

DTC framo

plcp

 Preamble and SIGNAL are DQPSK modulated in b/g – network (*cooperation*)

□ PLCP preamble: training sequence (agc, sync)

□ Tail: for convolutional coding

- convolutional coding
- interleaving, reduces the effect of error bursts
- **mapping**, bpsk, qpsk, 16-qam, 64-qam

physical layer

- 0,8 µs guard time allows ~240 m long multipath
- channel bw is ~16.7 MHz

Parameter	Value	
Nr of data subcarriers	48	
Nr of pilot subcarrier	4	
Subcarrier spacing	312,5 kHz	
FFT period	3,2 μs	
guard interval	0,8 μs	
symbol duration	4 μs	

- Because of the nature of wireless medium
 - unreliable
 - □ security
 - power limitation
- → management operations

scanning

bssid, ssid, bsstype, scantype, channel list

joining

□ matching local parameters, phy, synchronization, wep

association

□ station is associated to a certain network

reassociation

mobility management

Power management

 battery life
 maximize the sleeping time

 Power save modes

 sleeping (*off*)
 active (*on*)

- Infrastructure (w/ AP)
 - □ AP buffers frames for sleeping (*off*) station
 - announces periodically buffer status
 - □ station powers up to listen buffer status
- Independent (wo/ AP)
 - sending station has to ensure that the receiver is active (*on*)
 - stations listen periodically for ATIM (announcement traffic indication message)

security

Threats

- □ Denial-of-Service (*DOS*)
- □ Man-in-the-Middle (*MITM*)
- Eavesdropping
 - Manipulating
- Illicit Use
- Client and Access Point security
- Authentication, Authorization, Accounting

authentication open system □ reply-response □ address filtering shared key system □ shared secret

security

WEP

- □ specified in 802.11
- reasonably strong
 - Iength of the secret key
- efficient
 - can be implemented in hardware or software
- \Box optional in 802.11

problems

- no access point authorization
- □ poor key management (static shared secret)
- considered as broken

security

WPA

- pre-shared keys
- □ cipher and authetication negotiation
- more secure key management
- supports existing infrastructure

problems

□ not a standard (replaced with 802.11i)

homework

 Show how the available data rates over the radio interface are derived
 E.g. 6 Mbit/s uses BPSK (1 bit) and ½ coding rate (hint modulation * subchannels * coding = bits / symbol)

references

OFDM Wireless LANs: A Theoretical and Practical Guide

🗆 Juha Heiskala

802.11 Security

□ Bruce Potter

Wireless LANs: Implementing High Performance IEEE 802.11 Neworks

□ Jim Geier

S-72.333 PG Course in Radiocommunications
 2004 presentations