IEEE 802.11a/g
WLAN
outline

- background & overview
- mac & phy
- wlan management
- security
WLAN

- benefits
 - flexibility & mobility
 - installation
 - scalability
- disadvantages
 - distance
 - security
 - performance
IEEE 802.11a

- approved in 1999
- frequency range
 - 5.15 - 5.825 GHz
 - low operational distances *(LOS environment)*
- modulation
 - OFDM system with 52 subcarriers
 - BPSK, QPSK, 16-QAM, 64-QAM
- data rates
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s
- forward error correction with convolutional coding
 - coding rates 1/2, 2/3, 3/4
IEEE 802.11g

- approved in 2003
- higher operational distances
- frequency range
 - 2.4 – 2.4835 GHz
- physical layer same as in 802.11a
- compatible with 802.11b devices
mac

- is a logical entity that coordinates medium access
- provides framing operation and interaction between stations and access points
mac

- different network topologies
 - IBSS, ESS
- provides two coordinated functions for medium access
 - Distributed Coordination Function
 - Point Coordination Function
mac

- 802.11 divides phy into plcp and pmd layers
 - plcp maps the mac frames suitable for different mediums
- mac is the same for all versions

plpc = physical layer convergence procedure, pmd = physical medium dependent
mac frame structure

- **address**: from, to, fragment, bssid
- **type**: control, data, management
- **retry**: retransmission
- **FCS**: 32-bit CRC
Preamble and SIGNAL are DQPSK modulated in b/g – network (*cooperation*)

- PLCP preamble: training sequence (agc, sync)
- Tail: for convolutional coding

Diagram:
- PPDU = PLCP protocol data unit
- PLCP header
- SIGNAL one ofdm symbol
- DATA
- rate
- reserved
- length
- parity
- tail
- service
- PSDU
- tail
- pad

PPDU = PLCP protocol data unit
physical layer

- convolutional coding
- interleaving, reduces the effect of error bursts
- mapping, bpsk, qpsk, 16-qam, 64-qam
physical layer

- 0.8 μs guard time allows ~240 m long multipath
- channel bw is ~16.7 MHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr of data subcarriers</td>
<td>48</td>
</tr>
<tr>
<td>Nr of pilot subcarrier</td>
<td>4</td>
</tr>
<tr>
<td>Subcarrier spacing</td>
<td>312.5 kHz</td>
</tr>
<tr>
<td>FFT period</td>
<td>3.2 μs</td>
</tr>
<tr>
<td>guard interval</td>
<td>0.8 μs</td>
</tr>
<tr>
<td>symbol duration</td>
<td>4 μs</td>
</tr>
</tbody>
</table>

4 pilot subchannels 48 data subchannels
wlan management

- Because of the nature of wireless medium
 - unreliable
 - security
 - power limitation
- management operations

![Flowchart showing network operations: scanning → joining → association → reassociation with authentication]
wlan management

- scanning
 - bssid, ssid, bsstype, scantype, channel list
- joining
 - matching local parameters, phy, synchronization, wep
- association
 - station is associated to a certain network
- reassociation
 - mobility management
wlan management

- **State 1**, class 1 frames
 - RTS/CTS, ACK, beacons, ...

- **State 2**, class 1 & 2 frames

- **State 3**, class 1, 2 & 3 frames
 - data, power save, ...
wlan management

- Power management
 - battery life
 - maximize the sleeping time
- Power save modes
 - sleeping (off)
 - active (on)
wlan management

- **Infrastructure** *(w/ AP)*
 - AP buffers frames for sleeping *(off)* station
 - announces periodically buffer status
 - station powers up to listen buffer status

- **Independent** *(wo/ AP)*
 - sending station has to ensure that the receiver is active *(on)*
 - stations listen periodically for ATIM *(announcement traffic indication message)*
security

- Threats
 - Denial-of-Service (DOS)
 - Man-in-the-Middle (MITM)
 - Eavesdropping
 - Manipulating
 - Illicit Use
- Client and Access Point security
- Authentication, Authorization, Accounting
authentication

- open system
 - reply-response
 - address filtering

- shared key system
 - shared secret
security

- **WEP**
 - specified in 802.11
 - reasonably strong
 - length of the secret key
 - efficient
 - can be implemented in hardware or software
 - optional in 802.11

- **problems**
 - no access point authorization
 - poor key management *(static shared secret)*
 - considered as broken
security

- WPA
 - pre-shared keys
 - cipher and authentication negotiation
 - more secure key management
 - RADIUS
 - supports existing infrastructure

- problems
 - not a standard *(replaced with 802.11i)*
homework

- Show how the available data rates over the radio interface are derived
 - E.g. 6 Mbit/s uses BPSK (1 bit) and $\frac{1}{2}$ coding rate (hint modulation * subchannels * coding = bits / symbol)
references

- OFDM Wireless LANs: A Theoretical and Practical Guide
 - Juha Heiskala
- 802.11 Security
 - Bruce Potter
- Wireless LANs: Implementing High Performance IEEE 802.11 Networks
 - Jim Geier
- S-72.333 PG Course in Radiocommunications
 - 2004 presentations