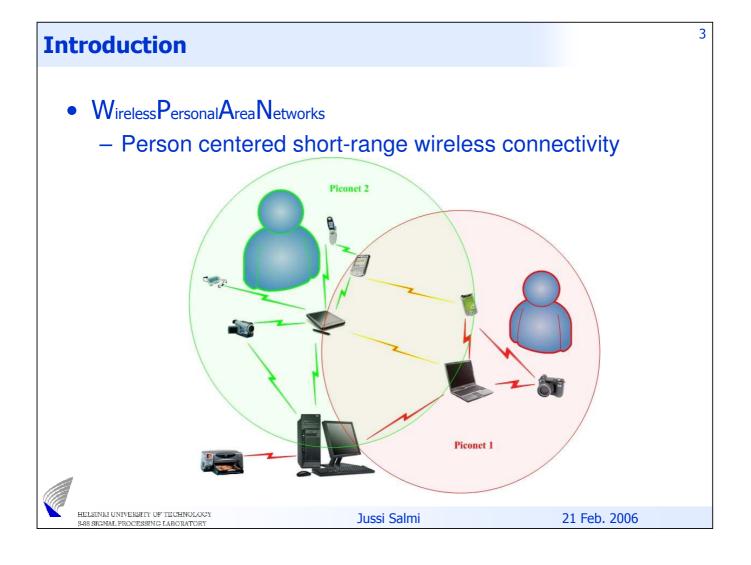


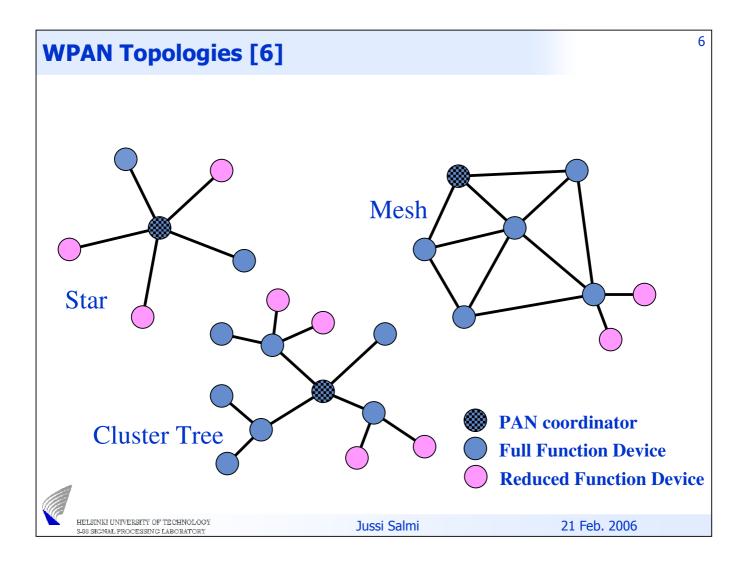
S-88 SIGNAL PROCESSING LABORATORY

HELSINKI UNIVERSITY OF TECHNOLOGY SMARAD Centre of Excellence


WPAN – Wireless Personal Area Networks

S-72.4210 Post-Graduate Course in **Radio Communications**

February 21, 2006


Jussi Salmi Signal Processing Lab./SMARAD, TKK, Espoo, Finland

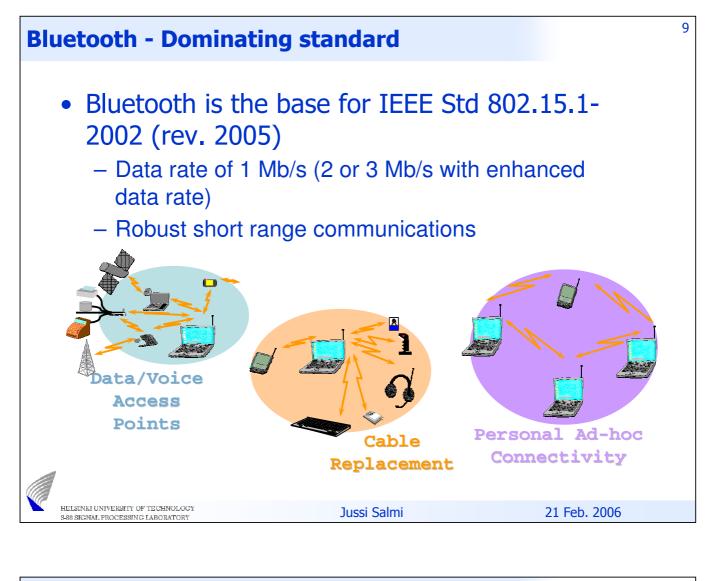
2 **Outline** 1. Introduction and applications 2. WPAN Topologies 3. IEEE 802.15 WPAN Working Group Dominating standard – Bluetooth • High Rate WPAN IEEE 802.15.3 Low Rate WPAN IEEE 802.15.4 • Mesh WPAN IEEE 802.15.5 • 4. Conclusions 5. References 6. Homework HELSINKI UNIVERSITY OF TECHNOLOGY Jussi Salmi 21 Feb. 2006

4 **Applications** Applications include Short-range (< 10 m) connectivity for multimedia applications PDAs, Cameras, Voice (hands free devices) • High QoS, high data rate (IEEE 802.15.3) Industrial sensor applications Low speed, low battery, low cost sensor networks (IEEE 802.15.4) Common goals Getting rid of cable connections Little or no infrastructure Device interoperability HELSINKI UNIVERSITY OF TECHNOLOGY Jussi Salmi 21 Feb. 2006 5-56 SIGNAL PROCESSING LABORATORY

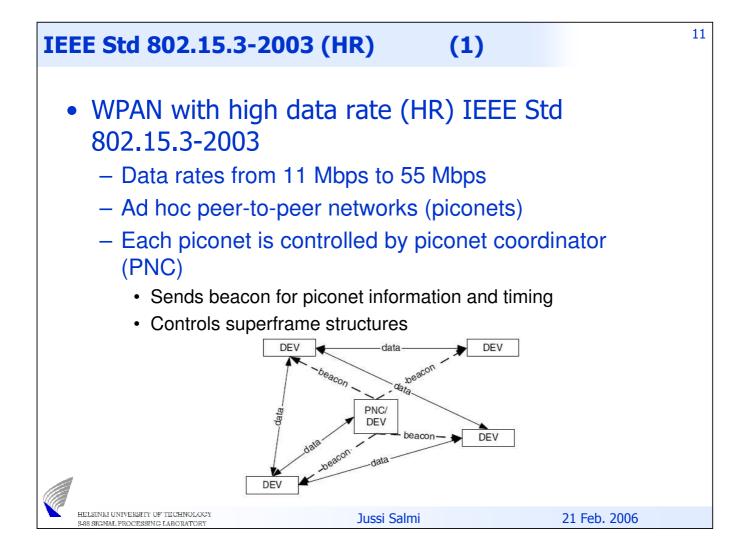
Acronyms	and abbreviat	tions	
		_	
CAP	contention acces	•	
CFP	contention-free p		
CSMA-CA		tiple access with collision avoidar	ice
CSS	chirp spread spec		
CTA	channel time allo		
DEV		device in WPAN piconet	
GTS	guaranteed time		
FFD	full-function devi		
LR-WPAN		personal area network	
MAC	medium access c		
MCTA	management CT/		
PAN	personal area ne	twork	
PHY	physical layer		
PPDU	PHY protocol dat		
QoS	quality of service		
RFD	reduced-function	device	
UWB	ultra wide band		
WLAN	wireless local are		
WMAN		litan area network	
WPAN	wireless personal	area network	
-			
HELSINKI UNIVERSITY OF \$488 SIGNAL PROCESSING I		Jussi Salmi	21 Feb. 2006

IEEE 802.15 WPAN Working Group

IEEE 802 LAN/MAN Standards Committee Active Work Groups	IEEE 802.15 Wireless Personal Area Network (WPAN) Working Group
802.1 High Level Interface	Task Group 1 WPAN/Bluetooth™
802.3 Ethernet	
802.11 WLAN	Task Group 2 Coexistence
802.15 WPAN	
802.16 WMAN	Task Group 3 WPAN High Rate
802.17 Resilient Packet Ring	
802.18 Radio Regulatory	
802.19 Coexistence	Task Group 4 WPAN Low Rate
802.20 Mobile Broadband Wireless Access	
802.21 Media Independent Handoff	Task Group 5 WPAN Mesh
802.22 Wireless Regional Area Networks	
HELSINKI UNIVERSITY OF TECHNOLOGY S-88 SIGNAL PROCESSING LABORATORY	Jussi Salmi 21 Feb. 2006


IEEE 802.15 WPAN Standards

IEEE 802.	15 (WPAN) standard	ls (table from [1])	
IEEE	Topic	Data	Suitable applications	QoS needs
standard		throughput		
802.15.1	Bluetooth	1Mbp	Cell phones, Computers, Personal Digital Assistants (PDAs)/Handheld Personal Computers (HPCs), printers, microphones, speakers, headsets, bar code readers, sensors, displays, pagers, and cellular & Personal Communications Service (PCS) phones.	QoS suitable for voice applications
802.15.2	Coexistence of Bluetooth and 802.11b	N/A	N/A	N/A
802.15.3	High-rate WPAN	>20Mbps	Low power, low cost solutions for portable consumer of digital imaging and multimedia applications	Very high QoS
802.15.4	Low-rate WPAN	< 0.25 Mbps	Industrial, agricultural, vehicular, residential, medical applications, sensors and actuators with very low power consumption and low cost	Relaxed needs for data rate and QoS


rde (table f .

7

8

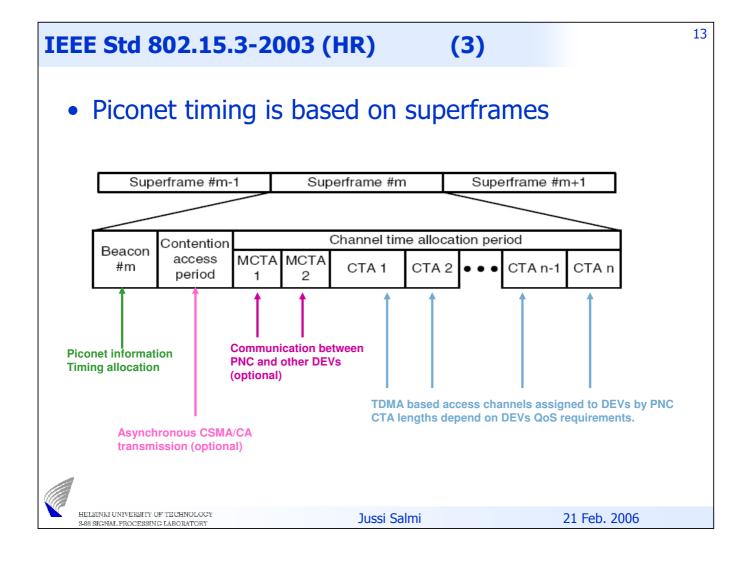
IEEE 802.15 WPAN High I	Rate (HR) Task Group	3 10
• Task Group 3		
 First high rate W 2003 (HR-WPA) 	/PAN standard: IEEE N)	E Std 802.15.3-
• Task Group 3a		
 Alternative PHY 	using UWB	
• Task Group 3b		
 Improved impler IEEE Std 802.15 	mentation and intero	perability of the
 Expected outcor 	me during 2006	
• Task Group 3c		
– WPAN at mm-w	aves (57-64 GHz)	
HELSINKI UNIVERSITY OF TECHNOLOGY S-88 SIGNAL PROCESSING LABORATORY	Jussi Salmi	21 Feb. 2006

IEEE Std 802.15.3-2003 (HR) (2)

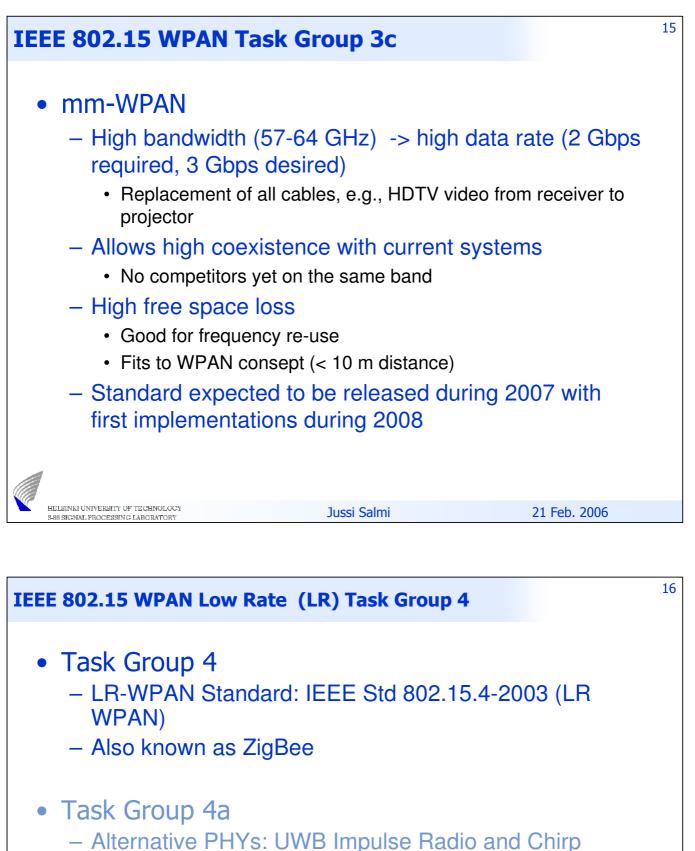
• Single carrier of 15 MHz bandwidth and trellis coding

Modulation type	Coding	Data rate
QPSK	8-state TCM	11 Mb/s
DQPSK	none	22 Mb/s
16 - QAM	8-state TCM	33 Mb/s
32-QAM	8-state TCM	44 Mb/s
64-QAM	8-state TCM	55 Mb/s

• Frequency band of 2.4-2.4835 GHZ


- Coexistence with 802.11b
 - Passive scanning
 - Dynamic channel selection
 - A channel plan that minimize channel overlap
 - Transmit power control

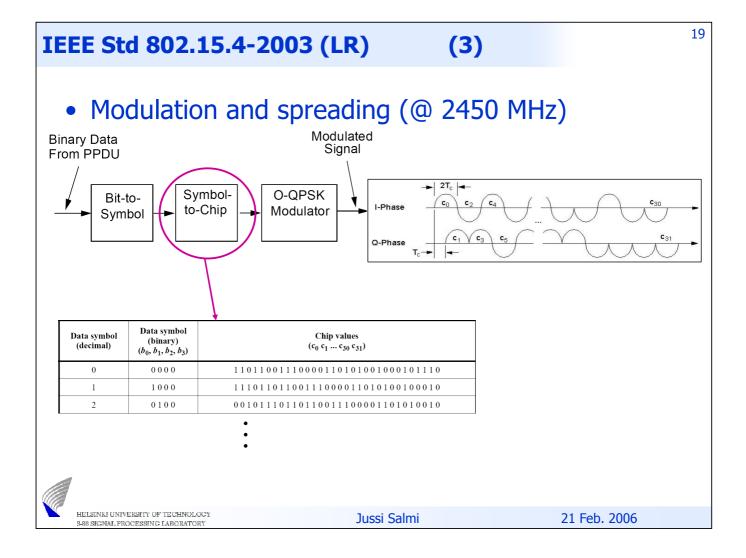
CHNL_ID	Center frequency	High-density	802.11b coexistence
1	2.412 GHz	Х	Х
2	2.428 GHz	Х	
3	2.437 GHz		Х
4	2.445 GHz	Х	
5	2.462 GHz	Х	Х

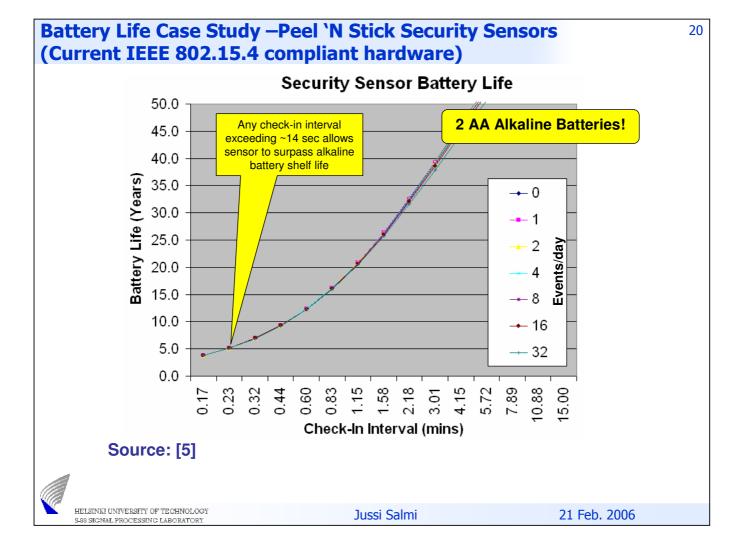

HELSINKI UNIVERSITY OF TECHNOLOGY S-86 SIGNAL PROCESSING LABORATORY

Jussi Salmi

12

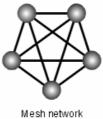
14 IEEE 802.15 WPAN Task Group 3a In 2003 Task Group 3a was formed for even higher data rates utilizing UWB at 3.1 - 10.6 GHz Two candidate proposals were merged (out of 23) 1. MultiBand OFDM (MB-OFDM) Supported by WiMedia Alliance (HP, Intel, Microsoft, Nokia etc.) • Data rates from 53.3 Mbps to 480 Mbps • 122 sub-carriers, QPSK modulation 2. Direct sequence-UWB (DS-UWB) Supported by UWB Forum (Motorola, Mitsubishi, U.S. Navy etc.) Data rates from 28 Mbps to 1320 Mbps ٠ Direct sequence spreading (DSS) for pulses of binary phase shift keying (BPSK) and quatemary bi-orthogonal keying (4BOK) Project was dissoluted in Jan 2006 after long lasting fight between the two proposals HELSINKI UNIVERSITY OF TECHNOLOGY Jussi Salmi 21 Feb. 2006 5-88 SIGNAL PROCESSING LABORATORY

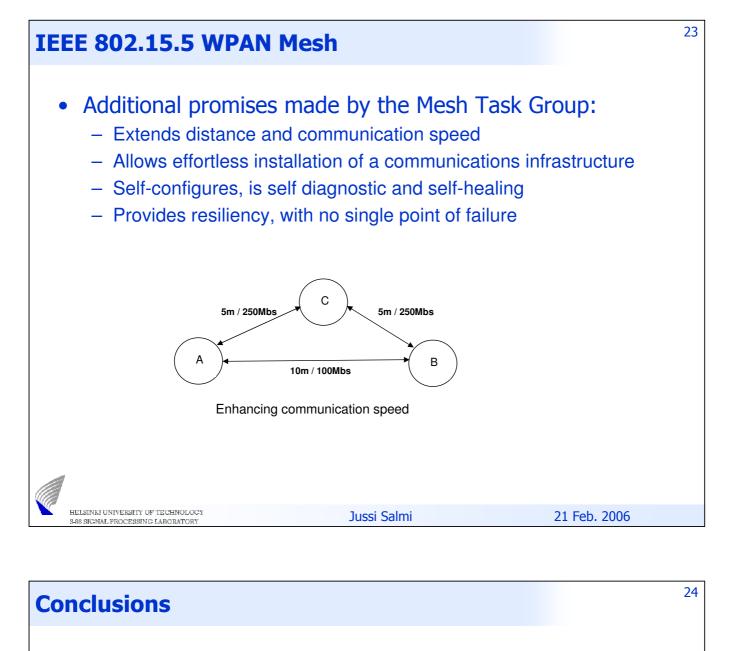

- Spread Spectrum (CSS)
- Task Group 4c
 - Specific enhancements and clarifications to the IEEE Std 802.15.4-2003


	302.15.4	1-2003	(LR)		(1)		
WPAN 2003	for low o	data rat	e (LR-V	VPAN)	IEEE Sto	1 802.15.4-	
	complexit	V					
	i-month to	•	ar hattor	/ lifo			
	r-to-peer a	-	-				
					250 kb/s	(@2450 MHz	7)
		11 ZU KU/S		vii iz) ((J 230 ND/3		-)
Applica					N		
– Sen	sors, intera	active toy	vs (joystic	ks etc.), remote c	ontrols	
РНУ	Frequency	Spreading	parameters		Data paramete	rs	
(MHz)	band (MHz)	Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols	
868/915	868-868.6	300	BPSK	20	20	Binary	
	902–928	600	BPSK	40	40	Binary	
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal	
						21 Feb. 2006	
E Std 8	302.15.4	1-2003	(LR)		(2)		
E Std 8	302.15. 4	1-2003	(LR)		(2)		
					(2)		
Two t	types of	device	es		(2)		
Two t	types of	device	es	duced	(2) -function		,
Two t – Full	types of	F device n (FFD)	es and rec				
Two t – Full FFD c	types of I-functior Can perf	f device (FFD) form as	es and rec 5 PAN	coorc	linator	(RFD)	
Two t – Full FFD c – Cor	types of function an perf	f device (FFD) form as optiona	es and rec 5 PAN 1 super	coorc frame	linator structure	(RFD)	
Two t – Full FFD c – Cor	types of function an perf	device (FFD) orm as optiona	es and rec 5 PAN 1 super or synchr	COOFC frame onization	linator structure on and opt	(RFD)	
Two t – Full FFD c – Cor	cypes of I-function can perf ntrols an Provides b	device (FFD) form as optional eacons fo	es and rec 5 PAN 1 super or synchr	COOFC frame onization	linator structure on and opt	(RFD)	
Two t – Full FFD c – Cor	cypes of I-function can perf ntrols an Provides b	device (FFD) orm as optiona eacons fo or low-lat	es and rec 5 PAN 1 super or synchr	COORC frame conization plication	linator structure on and opt	(RFD)	
Two t – Full FFD c – Cor	cypes of I-function can perf ntrols an Provides b	device (FFD) orm as optiona eacons fo or low-lat	es and rec 5 PAN 1 super or synchr tency app	COORC frame conization plication	linator structure on and opt	(RFD)	
Two t – Full FFD c – Cor	cypes of I-function can perf ntrols an Provides b	device (FFD) form as optional eacons for for low-lat	es and rec 5 PAN 1 super or synchr tency app	coorc frame conization olication	linator structure on and opt	(RFD)	
Two t – Full FFD c – Cor	cypes of function can perf ntrols an Provides b ime slots f	device (FFD) form as optional eacons for for low-lat	ention Period	COORC frame conization conization	dinator structure on and options	(RFD)	

Jussi Salmi

21 Feb. 2006


HELSINKI UNIVERSITY OF TECHNOLOGY S-88 SIGNAL PROCESSING LABORATORY


interences: Blueto	oth vs. ZigBee (TG4))[7]	
Modulation technique Bluetooth: Frequency H ZigBee: Direct Sequence	Je Hopping Spread Spectrum (FH ce Spread Spectrum (DSSS)	SS)	
• Protocol stack size Bluetooth: 250K bytes ZigBee: 28K bytes			
Battery Bluetooth: Intended fo ZigBee: Not rechargeal	r frequent recharging ble (one reason batteries will l	ast for up to 10 years)	
• Maximum network s Bluetooth: 1M bit/sec ZigBee: 250K bit/sec	peed		
• Network range Bluetooth: 1 or 100 me ZigBee: Up to 70 mete	eters, depending on radio class rs	5	
• Typical network join Bluetooth: 3 seconds ZigBee: 30 milliseconds	s time		
	Jussi Salmi	21 Feb. 2006	

• PHY and MAC layer mechanisms for mesh networking

- Mesh topology allows:
 - I. Network coverage extension
 - II. Enhanced reliability via route redundancy
 - III. Easier network configuration
 - IV. Battery life due to fewer retransmissions

Jussi Salmi

• IEEE 802.15 WPAN Work Group was introduced

- WPAN standards under active development

- Increasing data rates to be expected
- Low power consumption
- Self-configuring networks
- Coexistense of 802.11 is an issue

Future WPAN interests

- mm-wave systems (@ 60 GHz)
- Mesh networks (relaying)
- MIMO?
 - Not (yet) implicitly included in IEEE 802.15 framework
 - Enables enhanced reliability (diversity techniques) and capacity (spatial multiplexing)

References	25
[1] IEEE 802.15 Working Group for WPAN, http://ieee802.org/15/index.html	
[2] R. Prasad and L. Gavrilovska, "Research Challenges for Wireless Personal Area Networks", <u>http://www.eng.ukm.my/~micc2001/html/prasad.pdf</u>	
[3] T. Siep, "IEEE 802.15.1 Tutorial", Texas Instruments, http://grouper.ieee.org/groups/802/15/pub/2001/Jan01/01046r1P802-15 WG-802-15-1-TG1- Tutorial.ppt	
[4] G. Roberts, "IEEE 802.15 Overview of WG and Task Groups ",	
STMicroelectronics, http://grouper.ieee.org/groups/802/15/pub/2003/Jan03/03053r0P802-15 15 PC-Overview-of-WG15-and-Task-Groups.ppt	
[5] F. Martin, et. All, "IEEE 802.15.4 PHY Capabilities", May 2004, <u>http://grouper.ieee.org/groups/802/15/pub/04/15-04-0227-03-004a-ieee-802-15-4-phy-layer-and-implementation.ppt</u>	
[6] Ed Callaway, Motorola, "ZigBee Tutorial", July 2003, http://grouper.ieee.org/groups/802/15/pub/03/15-03-0305-00-0040-zigbee-tutorial.ppt	
[7] D. Rotella and R. Rotella, "IEEE 802.15.3a", http://faculty.eng.fiu.edu/~zhuha/tnc6270/presentations_slides/IEEE802153a.ppt	
HELSINKI UNIVERSITY OF TECHNOLOGY See Signal processing Laboratory Jussi Salmi 21 Feb. 2006	

Home	work		26
I.	In the IEEE Std 802.15. QPSK (O-QPSK) modula GHz. Explain how O-QPS the advantage of using	tion is used for char SK differs from QPS	nels at 2.4
II.	Assuming you have the wish to connect wireless	<u>s</u> :	
a	 Video projector + HDTV r m distance) 	eceiver + Digital video c	amera (within 5
b			Webcam + PC
C			
	Please explain briefly we solutions would you sele of the groups (a-c). (The to be currently on the m	ect for communication e selected solution of	on inside each
HELSINKI S-86 SICNA	UNIVERSITY OF TECHNOLOGY L PROCESSING LABORATORY	Jussi Salmi	21 Feb. 2006