

HELSINKI UNIVERSITY OF TECHNOLOGY SMARAD Centre of Excellence

Parameter Estimation of Double Directional Radio Channel Model

S-72.4210 Post-Graduate Course in Radio Communications

February 28, 2006

Jussi Salmi Signal Processing Lab./SMARAD, TKK, Espoo, Finland

Outline

- 1. Introduction
- 2. Channel sounding HUT Sounder
- 3. Double Directional Radio Channel model
- 4. Parameter estimation
 - Maximum likelihood principle
 - State-space modeling
- 5. References
- 6. Homework

Acronyms and abbreviations

AWGN	additive white gaussian noise	f	frequency
DMC	dense multipath component	$G_R(f)$	frequency response of the receiver
EKF	Extended Kalman Filter	$G_T(f)$	frequency response of the transmitter
i.i.d.	independent identically distributed	M_R	number of receive antennas
IR	impulse response	M_T	number of transmit antennas
MIMO	multiple input multiple output	M_{f}	number of frequency (delay) domain samples
PDF	Probability Density Function	R	covariance matrix
PDP	Power Delay Profile	$\mathbf{s}(\boldsymbol{\theta}_{sp})$	observation vector modeling propagation paths
RIMAX	parameter estimation method	t	time
Rx	receiver	х	measured observation vector
Tx	transmitter	$\boldsymbol{\Theta}_{dmc}$	parameters of dense multipath component
		θ.,,	parameters of concentrated propagation paths

Jussi Salmi

28 Feb. 2006

4

3

Introduction

- Future wireless MIMO communication systems
 - Exploit the spatial and temporal diversity of the radio channel
 - Require new complex models for simulations
 - Studying and comparing different transceiver structures
- Models are found through radio channel sounding measurements
 - Measurements are fitted to double directional channel models
 - Signal processing used for parameter estimation
 - Influence of measurement equipment is removed

Jussi Salmi

Channel sounding

Sounder output (single snapshot)

• 32 x 32 realizations of 510 sample IRs at every 8.7 ms

- Parameter estimation fits data to a channel model
 - Compresses the channel information using model parameters
 - Remove measurement antenna influence
 - Later the channel model parameters can be plugged into any antenna/transceiver configuration
 - Or parameters can be used to find out model statistics

Jussi Salmi

Double directional channel model

• Channel frequency response (Fourier transform of IR) at time *t* constructed with discrete propagation paths

$$\mathbf{H}(f,t) = G_{R_f}(f)G_{T_f}(f)\sum_{p} \left\{ \underbrace{\mathbf{B}_R(\varphi_{R,p},\vartheta_{R,p})}_{\in \mathcal{C}^{M_R \times 2}} \Gamma_p \underbrace{\mathbf{B}_T(\varphi_{T,p},\vartheta_{T,p})}_{\in \mathcal{C}^{M_T \times 2}} Te^{-j2\pi f\tau_p} \right\}$$

Sampled double directional channel model

- In practice discrete samples of **H**(*f*,*t*) are measured
- Sampled model for the observation consists of two parts:

$$\mathbf{x} = \mathbf{s}(\boldsymbol{\theta}_{sp}) + \mathbf{d}_{dmc} \in \mathcal{C}^{M_R M_T M_f \times 1}$$
Dense multipat

Dense multipath component:

 $\mathbf{d}_{dmc} \sim \mathcal{N}_C \left(\mathbf{0}, \mathbf{R}(\boldsymbol{\theta}_{dmc}) \right)$

$$\boldsymbol{\theta}_{sp} = \{ \boldsymbol{ au}, \ \boldsymbol{arphi}_{T}, \ \boldsymbol{artheta}_{T}, \ \boldsymbol{arphi}_{R}, \ \boldsymbol{artheta}_{R}, \ \boldsymbol{\gamma} \}$$

Specular propagation paths:

$$\mathbf{s} \left(\boldsymbol{\theta}_{sp} \right) = \begin{pmatrix} \mathbf{B}_{R_H} \diamond \mathbf{B}_{T_H} \diamond \mathbf{B}_f \end{pmatrix} \cdot \boldsymbol{\gamma}_{HH} + \begin{pmatrix} \mathbf{B}_{R_V} \diamond \mathbf{B}_{T_H} \diamond \mathbf{B}_f \end{pmatrix} \cdot \boldsymbol{\gamma}_{HV} + \\ \begin{pmatrix} \mathbf{B}_{R_H} \diamond \mathbf{B}_{T_V} \diamond \mathbf{B}_f \end{pmatrix} \cdot \boldsymbol{\gamma}_{VH} + \begin{pmatrix} \mathbf{B}_{R_V} \diamond \mathbf{B}_{T_V} \diamond \mathbf{B}_f \end{pmatrix} \cdot \boldsymbol{\gamma}_{VV} \end{pmatrix}$$

where \Diamond denotes the Khatri-Rao (columnwise Kronecker) product

Illustration of specular paths vs. DMC

Parameter estimation techniques

- Subspace techniques
 - ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques)
 - MUSIC (MUltiple SIgnal Classification)
 - RARE (RAnk Reduction Estimator)
- Maximum likelihood estimators
 - SAGE (Space-Alternating Generalized Expectation maximization)
 - RIMAX (iterative maximum likelihood)
- State-Space Methods
 - Extended Kalman Filter

Parameter estimation example: Maximum Likelihood Estimation (1)

• The Observation x is assumed i.i.d. Gaussian

$$\mathbf{x} \sim \mathcal{N}_C\left(\underbrace{\mathbf{s}\left(\boldsymbol{\theta}_{sp}
ight)}_{\text{mean}}, \underbrace{\mathbf{R}(\boldsymbol{\theta}_{dmc})}_{\text{covariance}}
ight)$$

• The Likelihood function, i.e., the pdf of x:

$$l(\boldsymbol{\theta}, \mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta}) \\= \frac{1}{\pi^{M} \det(\mathbf{R}(\boldsymbol{\theta}_{dan}))} e^{-(\mathbf{x}-\mathbf{s}(\boldsymbol{\theta}_{sp}))^{H} \cdot \mathbf{R}^{-1}(\boldsymbol{\theta}_{dan}) \cdot (\mathbf{x}-\mathbf{s}(\boldsymbol{\theta}_{sp}))}$$

• The maximum likelihood estimates are the parameters θ_{sp} and θ_{dmc} that maximize this function

Maximum Likelihood (2)

• Usually the log-likelihood $L(\theta, \mathbf{x})$ is preferred

$$L(\boldsymbol{\theta}, \mathbf{x}) = \ln(l(\boldsymbol{\theta}, \mathbf{x})) = \ln\left(\frac{1}{\pi^{M} \det(\mathbf{R})}\right) - (\mathbf{x} - \mathbf{s}(\boldsymbol{\theta}_{sp}))^{H} \mathbf{R}^{-1}(\mathbf{x} - \mathbf{s}(\boldsymbol{\theta}_{sp}))$$

• Let us assume that $\mathbf{R}=\mathbf{R}(\mathbf{\theta}_{dmc})$ is known. Then the maximum of $L(\mathbf{\theta},\mathbf{x})$ is found by minimizing the last term

$$\hat{\boldsymbol{\theta}}_{sp,ML} = \arg\min_{\boldsymbol{\theta}_{sp}} \left(\mathbf{x} - \mathbf{s}(\boldsymbol{\theta}_{sp}) \right)^{H} \mathbf{R}^{-1} (\mathbf{x} - \mathbf{s}(\boldsymbol{\theta}_{sp}))$$

• The minimum is found by evaluating zeros of the gradient (first order derivatives) of this term

Maximum Likelihood (3)

• The first order derivatives of $(\mathbf{x} - \mathbf{s}(\boldsymbol{\theta}_{sp}))^H \mathbf{R}^{-1} (\mathbf{x} - \mathbf{s}(\boldsymbol{\theta}_{sp}))$ are given by the score function:

$$\mathbf{q}\left(\mathbf{x}|\boldsymbol{\theta},\mathbf{R}\right) = 2 \cdot \Re \left\{ \mathbf{D}^{H}(\boldsymbol{\theta}) \mathbf{R}^{-1}(\mathbf{x} - \mathbf{s}(\boldsymbol{\theta})) \right\}, \quad \mathbf{D}(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\theta}^{T}} \mathbf{s}(\boldsymbol{\theta})$$

- The score function $q(x|\theta, R)$ has typically several zeros
 - Global search or other initialization (estimates from previous snapshot) required
 - Iterative (e.g. Gauss-Newton or Levenberg-Marquardt) method can be used to reach the optimal parameter estimates

Example of succesful parameter estimation [1]

Illustration of estimation results

- Panoramic (full 360°) view at courtyard of Technical University of Ilmenau
 - Rx at the middle of the courtyard (at point where the photo has been taken)
 - Tx going around the courtyard

Alternative approach: Tracking of the propagation path parameters

State-space methods

- State transition (possibly nonlinear): $\mathbf{x}_{k+1} = \mathbf{f}_k(\mathbf{x}_k, \mathbf{q}_k)$
- Measurement equation (nonlinear):

 $\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{r}_k)$

- Extended Kalman Filter (EKF)
 - EKF assumes Gaussian distribution
 - Linearizes state transition and measurement equations through Taylor series approximation

0.1 n.2

0.1

Measured PDP over time compared to PDP of EKF estimates.

Delay (ns)

0.2 0.3

- Tracks the parameters over time using recursive "filtering" (Kalman filters are popular in radar applications)
- Low computational complexity compared with iterative maximum likelihood
- Initialization using e.g. RIMAX
- Reliable tracking requires some statistics of the behavior of the parameters

RIMAX vs. EKF

EKF is computationally lighter than **RIMAX**

Simulation results show how EKF filters the parameters resulting in lower estimation error variance

Conclusions

- Parameter estimation fits measured data to a channel model
 - Compresses the channel information to model parameters
 - Removes measurement antenna influence
 - Later the channel model parameters can be used for
 - 1. Statistical analysis of the channel parameters
 - 2. Simulations with arbitrary antenna/transceiver configurations
- Most popular classes of parameter estimation techniques are subspace and maximum likelihood

Jussi Salmi

State-space methods are under research for revealing and utilizing the time-dependt properties of the radio propagation environments

References

- [1] A. Richter, "Estimation of radio channel parameters: Models and algorithms," Ph. D. dissertation, Technische Universität Ilmenau, Germany, 2005, [Online]. Available: <u>www.db-thueringen.de</u>
- [2] A. Richter, M. Enescu, V. Koivunen, "State-Space Approach to Propagation Path Parameter Estimation and Tracking", in Proc. 6th IEEE Workshop on Signal Processing Advances in Wireless Communications, New York City, June 2005.
- [3] J. Salmi, Statistical Modeling and Tracking of the Dynamic Behavior of Radio Channels, Master's Thesis, Helsinki University of Technology, Espoo, Finland, June 2005.
- [4] V-M. Kolmonen, J. Kivinen, L. Vuokko, P. Vainikainen, 5.3 GHz MIMO radio channel sounder, in Proc. 22nd Instrumentation and Measurement Technology Conference, IMTC'05, Ottawa, Ontario, Canada, May 16-19 2005, pp.1883-1888.

Homework

Maximum likelihood estimation of mean and variance

Consider a discrete-time received signal $r(k) = \mu + w(k)$, k = 0, 1, ..., N - 1where μ is a constant mean and $w(k) \sim N(0, \sigma^2)$ is AWGN with variance σ^2 .

The PDF (likelihood) of the observation vector ${\bf r}$ is thus given by

$$p\left(\mathbf{r}|\mu,\sigma^{2}\right) = \frac{1}{(\sqrt{2\pi\sigma^{2}})^{N}}e^{-\frac{1}{2\sigma^{2}}\sum_{k=0}^{N-1}(r(k)-\mu)^{2}}$$

Derive the maximum likelihood estimates for both the mean μ and the variance σ^2 .

HINT: Differentiate the log-likelihood function with respect to both parameters and set the derivatives to zero.