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Acronyms and abbreviations

AWGN additive white gaussian noise

DMC dense multipath component

EKF Extended Kalman Filter

i.i.d. independent identically distributed

IR impulse response

MIMO multiple input multiple output

PDF Probability Density Function

PDP Power Delay Profile

RIMAX parameter estimation method

Rx receiver

Tx transmitter

f frequency

GR (f) frequency response of the receiver

GT (f) frequency response of the transmitter

MR number of receive antennas

MT number of transmit antennas

Mf number of frequency (delay) domain samples

R covariance matrix

s(θsp) observation vector modeling propagation paths

t time

x measured observation vector

θdmc parameters of dense multipath component

θsp parameters of concentrated propagation paths
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Introduction

• Future wireless MIMO communication systems

– Exploit the spatial and temporal diversity of the radio 
channel

– Require new complex models for simulations
– Studying and comparing different transceiver 

structures

• Models are found through radio channel sounding 
measurements

– Measurements are fitted to double directional channel 
models

– Signal processing used for parameter estimation
– Influence of measurement equipment is removed
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Channel sounding

• Sequential channel measurement 
from between each Tx and Rx 
ports

• TKK 5.3 GHz MIMO setup

– 32 x 32 channels (16 dual polarized 
elements in arrays at both ends)

– Length of each impulse response 
(IR) is 510 samples (120 MHz 
sampling rate)

– Observation (”snapshot”) separation 
8.7 ms

• What sounder produces?

– Complex array of 32 x 32 x 510 
elements for each snapshot
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• 32 x 32 realizations of 510 sample IRs at every 8.7 ms

• Parameter estimation fits data to a channel model

– Compresses the channel information using model parameters
– Remove measurement antenna influence
– Later the channel model parameters can be plugged into any 

antenna/transceiver configuration
– Or parameters can be used to find out model statistics

Sounder output (single snapshot)
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Double directional channel model

• Channel frequency response (Fourier transform of IR) at time t 
constructed with discrete propagation paths

H(f, t) = GRf(f)GTf(f)
∑

p

{

BR(ϕR,p, ϑR,p)︸ ︷︷ ︸
∈CMR×2

ΓpBT(ϕT,p, ϑT,p)︸ ︷︷ ︸
∈CMT×2

Te−j2πfτp
}

ϕR, ϕT azimuth angle at Rx and Tx

ϑR, ϑT elevation angle at Rx and Tx

τ time delay of arrival

Γ complex path weight matrix

GRf ,GTf frequency response of Rx and Tx

Γp =

[
γHH,p γV H,p
γ
HV,p

γ
VV,p

]

∈ C2×2
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Sampled double directional channel model

• In practice discrete samples of H(f,t) are measured

• Sampled model for the observation consists of two parts:

where ♦ denotes the Khatri-Rao (columnwise Kronecker) product

Specular propagation paths:

θsp= {τ , ϕT , ϑT , ϕR, ϑR, γ}

Dense multipath component:

ddmc ∼ NC (0,R(θdmc))

x= s(θsp)+ ddmc ∈ CMRMTMf×1

s (θsp) =
(
BRH♦BTH♦Bf

)
· γ

HH
+
(
BRV♦BTH♦Bf

)
· γ

HV
+

(
BRH♦BTV♦Bf

)
· γ

V H
+
(
BRV♦BTV♦Bf

)
· γ

VV



28 Feb. 2006Jussi Salmi

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

normalized ττττ

m
ag

ni
tu

de
 [d

B
]

Estimation Residual
Specular Paths
Estimated DMC + Noise

Concentrated Propagation 
Paths 

Dense Multipath 
(distributed diffuse scattering) 

Illustration of specular paths vs. DMC
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Parameter estimation techniques

• Subspace techniques

– ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques)

– MUSIC (MUltiple SIgnal Classification)

– RARE (RAnk Reduction Estimator)

• Maximum likelihood estimators

– SAGE (Space-Alternating Generalized Expectation maximization)

– RIMAX (iterative maximum likelihood)

• State-Space Methods

– Extended Kalman Filter
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11Parameter estimation example: Maximum Likelihood  
Estimation (1)

• The Observation x is assumed i.i.d. Gaussian

• The Likelihood function, i.e., the pdf of x:

• The maximum likelihood estimates are the parameters θθθθsp

and θθθθdmc that maximize this function

mean covariance

x ∼ NC
(
s (θsp)︸ ︷︷ ︸,R(θdmc)︸ ︷︷ ︸

)

l(θ,x) = p
(
x|θ

)

= 1
πM det(R(θdan))

e−(x−s(θsp))H·R−1(θdan)·(x−s(θsp))
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Maximum Likelihood (2)

• Usually the log-likelihood L(θθθθ,x) is preferred

• Let us assume that R=R(θθθθdmc) is known. Then the 
maximum of L(θθθθ,x) is found by minimizing the last term

• The minimum is found by evaluating zeros of the gradient 
(first order derivatives) of this term

L(θ,x) = ln(l(θ,x)) = ln

(
1

πM det(R)

)

−(x−s(θsp))HR−1(x−s(θsp))

θ̂sp,ML = argmin
θsp

(
x− s(θsp))HR−1(x− s(θsp)

)



28 Feb. 2006Jussi Salmi

13
Maximum Likelihood (3)

• The first order derivatives of
are given by the score function:

• The score function q(x|θθθθ,R) has typically several zeros

– Global search or other initialization (estimates from 
previous snapshot) required

– Iterative (e.g. Gauss-Newton or Levenberg-Marquardt) 
method can be used to reach the optimal parameter 
estimates

(
x− s(θsp))HR−1(x− s(θsp)

)

q (x|θ,R) = 2·ℜ
{
DH(θ)R−1(x− s(θ))

}
, D(θ) =

∂

∂θT
s(θ)
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Channel sounding 
data 

Improve the parameter estimates of the 
distributed diffuse components ML-Gauss-Newton 

Algorithm (Section 6.1.5). 

Improve the parameter estimates of the 
propagation paths with the Levenberg-Marquardt 
algorithm using alternating path group parameter 

updates (Sections 5.2.4 and 5.2.5). 

check  
convergence 

Read new 
Observation 

 x 

reached 

not reached 

Store the parameter estimates. 

Calculate estimates for the path weights using the 
structural parameters µ of the previous 
observation (BLUE, Section 5.1). 

Search for new propagation paths 
(Section 5.1.5). 

Check the reliability of the propagation paths. 
Drop the unreliable paths (Section 5.2.7). 

Paths 
dropped ? 

yes 

no 

Outline of the RIMAX structure [1]

1. Read new snapshot x

2. Use previous estimates as initial values

3. Search for new propagation paths

4. Estimate the DMC component

5. Use iterative maximum likelihood method to
improve propagation path estimates

6. Check reliability of propagation paths based
on estimation error variance

7. Store the estimates and
proceed to the next snapshot
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Example of succesful parameter estimation [1]

• Example for the PDP of a measured 
impulse response (blue) and of the 
estimated concentrated propagation 
paths (red).

• Example for the PDP of the 
remainder (blue) of a measured 
impulse response after removing the 
estimated concentrated propagation 
paths. Red line is the estimated PDP 
of the DMC.

• Example for the PDP of the 
remainder of a measured impulse 
response after removing the 
estimated concentrated propagation 
paths and whitening (removing the 
DMC).
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Illustration of estimation results

• Panoramic (full 360°) view at courtyard of Technical 
University of Ilmenau

– Rx at the middle of the courtyard (at point where the photo 
has been taken)

– Tx going around the courtyard
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17Alternative approach: Tracking of the propagation 
path parameters

• Propagation path parameter 
estimation as a multi-target 
tracking problem

– Number of (reliable) paths P
represent multiple targets

– Large number of parameters for 
each target

– Linear vs. Nonlinear motion model

– Nonlinear Measurement model

– Modeling the noise process x

y

z
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• State transition
(possibly nonlinear):

• Measurement equation
(nonlinear):

• Extended Kalman Filter (EKF)

– EKF assumes Gaussian distribution
– Linearizes state transition and measurement equations through 

Taylor series approximation
– Tracks the parameters over time using recursive ”filtering”

(Kalman filters are popular in radar applications)
– Low computational complexity compared with iterative maximum 

likelihood
– Initialization using e.g. RIMAX
– Reliable tracking requires some statistics of the behavior of the 

parameters

State-space methods

Measured PDP over time compared to PDP of EKF estimates.

xk+1= fk(xk, qk)

yk = h(xk, rk)
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RIMAX vs. EKF

• EKF is computationally lighter 
than RIMAX

• Simulation results show how 
EKF filters the parameters 
resulting in lower estimation 
error variance
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Conclusions

• Parameter estimation fits measured data to a channel 
model

– Compresses the channel information to model parameters
– Removes measurement antenna influence
– Later the channel model parameters can be used for

1. Statistical analysis of the channel parameters
2. Simulations with arbitrary antenna/transceiver configurations

• Most popular classes of parameter estimation techniques 
are subspace and maximum likelihood

• State-space methods are under research for revealing 
and utilizing the time-dependt properties of the radio 
propagation environments
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Homework

Maximum likelihood estimation of mean and variance

Consider a discrete-time received signal

where µ is a constant mean and w(k) ~ N(0,σ 2) is AWGN with variance σ 2.

The PDF (likelihood) of the observation vector r is thus given by

Derive the maximum likelihood estimates for both the mean µ and the variance σ 2.

HINT:   Differentiate the log-likelihood function with respect to both parameters 
and set the derivatives to zero.

r(k) = µ+ w(k), k = 0,1, . . . , N − 1

p
(
r|µ,σ2

)
= 1

(
√
2πσ2)N

e
− 1
2σ2

∑N−1
k=0 (r(k)−µ)

2


