

1

Contents

- Contents
- DVB Broadcasting System
- DVB Broadcasting Standards
- DVB-S, DVB-C and DVB-T Channel Coding
- DVB-H Standards
- DVB-H System
- From DVB-T to DVB-H
 - Continual and TPS pilots, interleaver, etc.
 - Time Slicing
 - MPE-FEC
- IPDC
 - Standardization
 - Protocol stacks
- DVB-H Network Topology
- DVB-H Handover
- Homework
- References

DVB Broadcasting System

DVB Broadcasting Standards

- Transmission
 - EN 300 421 DVB Framing structure, channel coding and modulation for 11/12 MHz satellite service (DVB-S)
 - EN 300 429 DVB Framing structure, channel coding and modulation for cable (DVB-C)
 - EN 300 744 DVB Framing structure, channel coding and modulation for digital terrestrial television (DVB-T)
- Audio-Video Coding
 - MPEG-2: ISO 13818 Generic coding of moving pictures and associated audio information: Systems, video, audio, compliance testing, DSM-CC, etc.
 - Part1 Systems: Transport Stream, Program Specific Information (PSI), Part2 Video, Part3 Audio, Part6 DSM-CC Data Broadcasting on MPEG2
 - MPEG-4: ISO 14496 Coding of audio-visual objects
 - Part1 System, Part2 Visual, Part3 Audio, etc.
 - MPEG-4 AVC: ISO 14496 Coding of audio-visual object Part10 (ITU.T H.264)
 - ITU.T H.263 Coding of moving video
- Data Broadcasting
 - EN 301 192 DVB specification for data broadcasting
 - MPE, INT, Time Slicing
 - EN 301 468 (DVB-SI) DVB service information
 - NIT, Service Information

Error Correction in DVB System (Transmitter)

Requirements for Modulation in DVB Systems

Satellite reception (QPSK, Phase modulation)

- Carrier to noise ratio C/N can be very small (10 dB or less)
- No reflections, but nonlinear transmission chain (C-class amplifiers in the satellites) leading to amplitude distortions
- => constant amplitude modulation should be used (QPSK)

• Cable reception (QAM, Amplitude and Phase modulation)

- C/N is quite high, generally over 30 dB
- The signal can be effected by echoes due to impedance mismatches in the network
- Amplitude modulation can be used, but echo cancellation is necessary
- Terrestrial reception (COFDM, Coded Orthogonal Frequency Division Multiplex)
 - Propagation conditions for signal are difficult, especially if mobile reception is required with simple antennas => variable echoes due to multipaths and signal level variations
 - => COFDM right choice

DVB Channel Coding: Randomization, energy dispersal

- All data in DVB channel is transmitted in fixed length packets; at this stage sync+187 data bytes
- Sync byte = 0x47
- Ever 8th sync byte = 0xB8
- Bytes between sync bytes are randomized for energy dispersal

DVB Channel Coding: Interleaver

DVB Channel Coding: Outer coding (RS), interleaving, framing

Figure 3d) Interleaved frames; interleaving depth I=12 bytes

 $\overline{\text{Sync1}}$ = not randomized complemented sync byte Sync n = not randomized sync byte, n = 2, 3, ..., 8

DVB-S Satellite Broadcasting (Transmitter Site Processing)

DVB-C Cable Broadcasting (Transmitter Site Processing)

DVB-T Terrestrial Broadcasting

DVB-T Channel Coding: Inner Interleaver

DVB-T Modulation Method: COFDM (Coded Orthogonal Frequency Division Multiplexing)

10-Jan-2006

DVB-T COFDM Carrier Arrangement

Synchronization Pilots for Receiver Locking

DVB-H Standards

DVB-H System (see EN 302 304!)

From DVB-T to DVB-H

- DVB-T as a physical transfer layer has been specified in ETS 300 744.
- With the introduction of DVB-H some new features have been added to the specification.
 - 4K mode, in-depth interleavers, DVB-H signalling, parameters for 5 MHz operation in non-broadcast bands.
 - Additions have been done in Annexes F and G.
 - Some references from the main text to new annexes.
 - Some editorial corrections in the main text.
 - Additions are not intended for fixed broadcasting.
- New DVB-H documents have been created
 - EN 302 304 Transmission System for Handheld Terminals
 - In just a short document referring to EN 300 744 and some other documents which have been updated during the process
 - TS 102 377 DVB-H Implementation Guidelines
 - 4K-mode and physical layer aspects
 - Time slicing principle explained
 - MPE-FEC functionality explained
 - DVB-H/DVB-T compatibility issues
 - DVB-H services
 - Hierarchical modulation
 - Handover
 - Etc.

DVB-H System Blocks Modified from DVB-T System

4K-Mode is an Interpolation Between 2K- and 8K-Mode

- The additional 4K DVB terrestrial transmission mode is an interpolation of the parameters defined for the 2K and 8K transmission modes.
- It aims to offer an additional trade-off between transmission cell size and mobile reception capabilities, providing an additional degree of flexibility for network planning.
- Features of 8K, 4K and 2K transmission modes:
 - 8K transmission mode
 - can be used both for single transmitter operation:
 - suitable for small, medium and large SFNs
 - allows high-speed reception
 - 4K transmission mode
 - can be used both for single transmitter operation
 - Suitable for small and medium SFNs
 - allowing very high speed reception
 - 2K transmission mode
 - can be used for single transmitter operation
 - suitable and for small SFNs with limited transmitter distances
 - allows extremely high speed reception

4K Native Interleaver and In-depth Interleaver

- Bit interleaving block size is 126 bits and 24 blocks are needed to cover one OFDM symbol in 4K mode
- In-depth interleaver goes over two symbol times so that impulse noise immunity is quasisimilar to 8K mode
- The native 4K interleaver uses the same general structure as the 2K/ 8K interleavers; a new permutation table has been developed

DVB-H: Continual and TPS Pilots in 4K Mode

- 4K mode uses 89 continual pilots
 - 8K: 177, 2K: 45
- 4K mode uses 34 TPS pilots
 - 8K: 68, 2K: 17
- 4K mode uses 3024 data carriers
 - **•** 8K: 6048, 2K: 1512

	Continual pilots carrier positions for 4K mode (index number k)										
0	48	54	87	141	156	192	201	255	279	282	333
432	450	483	525	531	618	636	714	759	765	780	804
873	888	918	939	942	969	984	1 050	1 101	1 107	1 110	1 137
1 140	1 146	1 206	1 269	1 323	1 377	1 491	1 683	1 704	1 752	1 758	1 791
1 845	1 860	1 896	1 905	1 959	1 983	1 986	2 037	2 136	2 154	2 187	2 229
2 235	2 322	2 340	2 418	2 463	2 469	2 484	2 508	2 577	2 592	2 622	2 643
2 646	2 673	2 688	2 754	2 805	2 811	2 814	2 841	2 844	2 850	2 910	2 973
3 027	3 081	3 195	3 387	3 408							
·											
TPS carrier indices for 4K mode											

				TPS car	rier indi	ces for 4	K mode				
34	50	209	346	413	569	595	688	790	901	1 073	1 2 1 9
1 262	1 286	1 469	1 594	1 687	1 738	1 754	1 913	2 050	2 117	2 273	2 299
2 392	2 494	2 605	2 777	2 923	2 966	2 990	3 173	3 298	3 391		

DVB-H: Transmitter Parameter Signalling (TPS)

- TPS information contains 68 bits; one bit sent in every OFDM symbol
- In 4K mode there are 34 carriers for TPS bits
- TPS is defined over 68 consecutive OFDM symbols, referred as one OFDM frame
- Specially DVB-H related TPS bits are defined in Annex F of EN 300 744

Bit number	Format	Purpose/Content
sg ^{an} ?	see clause 4.6.2.1	Initialization
s ₁ to s ₁₆	0011010111101110 or 1100101000010001	Synchronization word
s ₁₇ to s ₂₂	see clause 4.6.2.3	Length indicator (see annex F)
s ₂₃ , s ₂₄	see table 10	Frame number
s ₂₅ , s ₂₆	see table 11	Constellation
s ₂₇ , s ₂₈ , s ₂₉	see table 12	Hierarchy information (see annex F)
s ₃₀ , s ₃₁ , s ₃₂	see table 13	Code rate, HP stream
s ₃₃ , s ₃₄ , s ₃₅	see table 13	Code rate, LP stream
s ₃₆ , s ₃₇	see table 14	Guard interval
s ₃₈ , s ₃₉	see table 15	Transmission mode (see annex F)
s ₄₀ to s ₄₇	see clause 4.6.2.10	Cell identifier
s ₄₈ to s ₅₃	all set to "0"	See annex F
s ₅₄ to s ₆₇	BCH code	Error protection

DVB-H Dedicated TPS Bits

Bit number	Format	Purpose/Content		
s ₁₇ - s ₂₂	see clause F.4.6.2.3	Length indicator	33 usable bits	
s ₂₇ , s ₂₈ , s ₂₉	see clause F.4.6.2.6	Hierarchy information	Interleavers: bits s27-s29	
s ₃₈ , s ₃₉	see clause F.4.6.2.9	Transmission mode	Transmission modes: bits s38-s39	
s ₄₈ , s ₄₉	see clause F.4.6.2.11	DVB-H signalling	Time slicing and MPE-FEC usage	
s ₅₀ - s ₅₃	all set to "0"	Reserved for future use		
Bits s ₂₇ , s ₂₈ , s ₂₉		α value		
000	No	n hierarchical		
001		α = 1		
010		α = 2		
011		α = 4		
100	5	see annex F		
101	s	see annex F	In-depth interleavers in use	
110	s	see annex F		
111		see annex F		
Bits s ₃₈ , s ₃₉	Trar	nsmission mode		
00		2K mode		
01		8K mode		
10		4K mode		
11		reserved		

s ₄₈	s ₄₉	DVB-H signalling			
্জ্য 0	x	Time Slicing is not used			
<u> </u>	x	At least one elementary stream uses Time Slicing			
х	0	MPE-FEC not used			
х	1	1 At least one elementary stream uses MPE-FEC			
NOTE: "x" means whatever bit state.					

Time Slicing Reasoning

- In normal DVB-T MPEG-2 and data transmissions the transport streams from the services are multiplexed together with high frequency on the TS-packet level.
- This means that the services are transmitted practically in parallel, each service having it's share of the TS-packets.

- For a DVB-T receiver it is impossible to receive only the wanted TS-packets due to the high multiplexing rate.
- All data must be received -> high power consumption.

Time Slicing Principle

- In time slicing principle the IP-services take certain time slice of the MPE data service when the large portion of the channel capacity is reserved for that service:
 - In this example time slice: 200 ms
 - Full capacity of the MPE data service is reserved for one IP-service at a time
- After longer period, let's say 4 seconds, the first service is again in transmission
- And so on ...
- Timing slicing and transmission times can be configured and signalled dynamically to all receivers in the system

 The IPDC service is just another "MPE-data pipe" for the DVB-system and can be freely multiplexed with other transport streams.

Time Slicing Facts

- DVB-T is by default intended for continuous transmission
 - Synchronisation times are rather long: in the order of 200 ms.
 - Thus long time intervals have to be used to have full gain.
- The receiver has to know when to wake up
 - This is done by sending time difference to the next relevant burst
 - Real time signalling per elementary stream using Delta-T method.
- PSI/SI not Time Sliced
 - Not required for power saving
- Time Sliced and non-Time Sliced services in common multiplex
 - Only receiver switched off, transmitter on all the time
 - Support for Time Slicing not mandatory to receive Time Sliced service
- Buffer in terminal required for constant output rate
- Figure below: "Yellow Service" (Service 3) is of interest

MPE-FEC as Additional Data Protection: Transmission #1

- 1. Fill in the Application data table columnwise with IP datagrams
 - Fill in until the next IP does not fit
 - Or until delta-t period has passed
- 2. Add zero padding after the last IP datagram to the end of the table
- 3. Do the RS encoding for each row in the Application data table
- 4. Add the resulting 64 RS parity bytes to the corresponding row in the RS data table
 - Now both tables are ready

MPE-FEC as Additional Data Protection: Transmission #2

- 5. Read out IP datagrams column-wise
- 6. Read out RS columns
- Encapsulate IP datagrams into the MPE sections
- 8. Encapsulate RS columns into the MPE-FEC sections
- 9. Add real time parameters to the header of every section
- 10. Calculate CRC 32 to the end of the section
- 11. Write out the sections starting from MPE 1
 - Zero padding is not transmitted

Code Rate Adjustments in MPE-FEC

- Code rate k/n can be decreased by having less information bytes (k) and increased by having less parity bytes (n-k)
- Higher code rate can be achieved with puncturing RS data columns after encoding
- Lower code rate can be achieved by adding zero padding columns to the application data area
- Normal code rate for MPE-FEC is CR=191/255≈3/4
- Examples for other rates:
 - $CR=1/2 \Rightarrow$ number of padding columns is 127
 - $CR=2/3 \Rightarrow$ number of padding columns is 63
 - $CR=5/6 \Rightarrow$ number of punctured columns is 26

IPDC Baseline Standardization - Services

- Video
 - H.263 and H.264 (MPEG-4 AVC)
 - IRD A 128kbps, OCIF-15fps
 - IRD B 384kbps, CIF-15fps => QVGA-15fps
 - IRD C 768kbps, CIF-30fps => QVGA-30fps
- File download
 - Use of FLUTE Protocol by default
- ESG (Electronic Service Guide)
 - Service announcement
 - IP addresses
- Baseline standardization going on in DVB-CBMS

IP Data casting (IPDC) over DVB-H: Protocol Stack

Transmitter

Receiver

DVB-H Protocol Stacks

DVB-H defines the delivery of IP datagrams on DVB-T signal to a mobile terminal

- DVB-T carries a Transport Stream
- Transport Stream is a series of transport packets
 - 188 bytes, PID (Packet Identifier) in the header
- Sections carried on transport packet payload
 - Fragmenting may be required
- PSI/SI sections carry the signalling / announcements
- Payload of each MPE section carries a single IP datagram
- DVB-H services carried on IP 10-Jan-2006

Transport Stream (TS)

- Multiplexer functionality (in a head end) builds a Transport Stream (TS) from multiple Elementary Streams (ES). One PID is allocated for each ES.
- Some PIDs are reserved for PSI/SI only
 - PSI/SI carries the mapping between the input streams and PIDs
- The output bitrate of a multiplexer (i.e. the bitrate of the TS) remains static
 - If input streams require less bandwidth, null-packets (PID = 0x1FFF) added
 - If input streams require more bandwidth, some transport packets dropped

Elementary Stream (ES)

- By reading the PSI/SI, a receiver knows available input streams and used PIDs
- De-multiplexer functionality (in a receiver) filters the requested input stream(s)

DVB-H Network Topology

DVB-T/DVB-H Base Station

- <u>Case A</u>, Basic Setup: TS-feed is taken to the site via fibre or radio link.
 - SFN: SFN adapter is added between TS-adapter and DVB-T Modulator in case of Single Frequency Network (SFN)
- <u>Case B</u>, IP Transmission (DVB-H): IP-encapsulator on site, IP-connection via 100BaseT.
 - SFN: SFN adapter is added between TS-adapter and DVB-T Modulator in case of Single Frequency Network (SFN)

DVB-T/DVB-H Gap Filler Technology

- Gap Filler is a simple DVB-T transmitter which receives the signal from a main transmitter, filters, amplifies and re-radiates it.
- It does not include any modulator.
- It is a simple way of building SFNs.
- Output power is typically less than 50 W.

Relaying DVB-T/DVB-H Base Station

- The TS-stream [=IP] can be obtained by receiving the adjacent DVB-T cell with a DVB-T receiver. This is in general called relaying.
- In digital systems relaying does not degrade the signal.
- Relaying is cheaper than radio link.
- The receiving and transmitting frequencies must be different ⇒ not suitable for SFN.

Handover Support in DVB-H

- Smooth handovers in regular DVB-T systems would require two front ends in the receiver.
- When receiver is in OFF state (not receiving a service) it can monitor neighbouring cells for possible soft handover
- Soft handover, maintaining the service, is possible with minimal increase in power consumption.
- Example: Terminal Equipment #1 (TE#1) is receiving Service A from service cell F1. During OFF-time TE#1 can listen to adjacent cells F2 and F3

Homework(s)

- 1. List error correction methods used in each of the DVB transmission media: DVB-S, DVB-C and DVB-T/DVB-H.
- 2. Make a comparison table of the technical features of 2K, 4K and 8K modes in DVB-T/DVB-H?
- 3. For what purposes are TPS bits used in DVB-T/DVB-H?

- 1. EN 300 421 DVB Framing structure, channel coding and modulation for 11/12 MHz satellite service (DVB-S)
- 2. EN 300 429 DVB Framing structure, channel coding and modulation for cable (DVB-C)
- 3. EN 300 744 DVB Framing structure, channel coding and modulation for digital terrestrial television (DVB-T)
- 4. EN 302 304 DVB-H Transmission System
- 5. TS 102 377 DVB-H Implementation Guidelines
- 6. EN 301 192 DVB specification for data broadcasting
- 7. EN 301 468 (DVB-SI) DVB service information
- 8. TS 101 191 SFN Megaframe for SFN Synchronization
- 9. Etc.