Public Switched Telephone Network (PSTN)

Topics in PSTN

- Introduction
 - review of early exchanges
 - PSTN Standards
- Trunk Network

 Node 1 Node 2

 Access

 Node 3

 Terminals
- User services & terminals
- Modern exchange technology
 - interface standards
 - access and trunk networks
 - signaling
 - network management
 - internetworking (telecommunications between networks)

Introduction

- PSTN switching is based on <u>circuit switching</u> by <u>duplex*</u> connections
- Temporary <u>bidirectional</u> connections
- Originally for <u>speech</u> (voice) only at 300-3400 Hz
- Earlier <u>two</u> subscribers connected by purely physical connection (physical switch contacts)
- Nowadays by <u>time slots</u> ~ ISDN is integrated to PSDN
- PCM is the TDMA standard for the digital transmission
- PCM time slots consist of <u>8 bit</u> samples
- For voice digital exchange sets up <u>64 kbit/s</u> connections
- <u>Data connections</u> by (1) modems, (2) ISDN interface
 (3) leased lines via X.25 / Frame relay, or (4) ADSL

*What are semi-duplex and simplex?

PCM: pulse coded modulation

History

- 1876 A. G. Bell telephone patent
- Topology of the first network using Strowger switch
- 1878 The first exchange constructed in La Porte, the US
 - could connect any two of the 21 subscribers
 - manual switching
- 1891 first automatic exchange: Strowger Switch by Almon
 B. Strowger: an undertaker in Kansas City
- A 100 line Strowger switch:
 - each user has its own selector
 - no concentrators
 - expensive

See further info also at: http://www.seg.co.uk/telecomm/

An early analog PBX: 100 subscriber exchange (Subscriber controlled call set-up)

MAIN PARTS:

- Call finders (CF)
- Group selectors (GS)
- Line selectors (LS)

Call setup:

- 1. A-sub. picks up handset (CF detects)
 - exchange sends line available -tone
- 2. A-sub. sends pulses (GS, LS activated)
 - exchange sends ringing tone

An early exchange, call setup

- One of the 100 subscribers <u>lifts</u> his handset -> Call finder is activated to <u>search</u> the line.
- After the line is located <u>other relays</u> connect the dial-tone generator.
- The subscriber <u>selects</u> two digits.
- The first digit selects the subscriber group by using the group selector.
- The second digit selects the <u>line</u> selector.
- Selection is done by sending <u>pulses</u> that move the selectors stepwise.
- When connection is established a <u>ringing tone</u> is sent.
- Note that only 10 subscribers of 100 can call at the same time to different numbers! (why?) (concentration is 1:10)

PSTN exchange development

- Register-controlled setup (1920 -)
 - B-subscriber number receiver by a register
 - register controls all the remaining call setup stages
- Distributed control
 - Markers indicate idle switches
 - Thus markers control path routing
- Stored program control, 1960s and 1970s (SPC)
 - New services
 - supervision (operation & maintenance O&M)
 - integrated charging
 - gathering statistics
 - IN services
 - Easier updating and maintenance

e Ba

1960 and before

-

Categorizing switching

Crossbar switch

Crossbar switch - mechanics¹

Access network

- local network, local loop or subscriber network
- Copper pairs are ideally suited to
 - supplying power to the telephones
 - baseband transmission of voice
 - no modulation is required as in the case of fibre and radio applications
 - existing copper pair can also be used to access services of greater bandwidth in other networks
- attenuation of voice signals represented a problem for network planners - solution loading coils

Present-day PSTN 'terminals¹' in access network

- Fixed-line phones (analog, ISDN)
- Cordless phones (PBX-RF interface: DECT²)
- Fax
- Pay phones
- Private Branch Exchange (PBX)
- Gateways to Public Land Mobile Networks (PLMN):
 - GSM
 - wireless local area networks (WLAN)
- Local loop data extensions
 - modems
 - ADSL technology
 - (leased lines)

¹also interfaces to other networks & equipment ²DECT: Digital Enhanced Cordless Telecommunications ¹²

Analog local loop interface

Loop current used for signaling & message 20 mA 20 mA

Number "8" dialed.

"step by step" rotary

switch forward one

position.

per trunk signaling in local loop

- long setup time
- hacking easy
- voice grade circuits
- interference & cross-talk sensitive
- expensive

0 mA

Handset

goes "on

hook" or

hangup.

Basic telephone terminal

- Modern keypads use dual-tone dialing
- The speech circuit adapts voice levels and isolates mic and speaker

Dual-tone dialing

- Dual-tone dialing is used in subscriber loop to transmit the selected B-subscriber number
- Earlier pulse selection was applied (very rare nowadays)

Some features in PSTN of ´60

Coil loading was used to enhance higher frequency range

 Frequency division multiplexing (FDM) with single sideband (SSB) modulation was used in trunk networks

Trunk network

- 1960s employed both frequency division multiplexing (FDM) and "baseband" over paired cable
- FDM was anyhow the backbone of the trunk networks of the 1960s
 - ITU-T FDM recommendations specify
 - capacity and frequencies for FDM systems with 12, 60, 300, 900, 960, 2,700 and 10,800 channels
 - Carrier frequencies are between 60 kHz and just under 60 MHz
- In general, FDM can be used in <u>symmetrical paired</u> cable, coaxial cable, radio link and satellite
- Modern trunk networks apply optical links that may use Dense Wavelength Division Multiplexing (DWDM)

Some features of PSTN of '60 (cont.)

- Network intelligence and value-added services
 - not supported as such
 - operators were anyhow intelligent :)
 - value added services by tracking what happens in the area!
- Inter-exchange signaling
 - call setup took about 15 seconds
 - channel-associated signaling (CAS: No.5, R1,R2*)
 - about 10% of trunk line capacity was taken by signaling
- Operation and maintenance (O&M)
 - using local info-databases and local workforce
 - network maintenance was based on on-field check-ups

*nowadays in ISDN & PLMN: common channel signaling (CCS): \$\$7

Basic modules of a modem

- Diagnostic unit
 - Checks faults and controls the modem
- Interface and line units
 - Adapt the modem and terminal
- Modem performs A/D and D/A conversion and selects rate such that transmission quality criteria (error rate) can be meet

Modem specifications

- ITU-T specifies several modem standards as
 - V.26 (11/88) 2400 bits per second modem for use on 4-wire leased lines
 - V.27 (11/88) 4800 bits per second modem for use on leased lines
 - V.27ter (11/88) 4800/2400 bits per second modem for use in the general switched telephone
 - V.29 (11/88) 9600 bits per second modem for use on point-to-point 4-wire leased lines
 - V.90 (09/98) 56 000 bit/s downstream and up to 33 600 bit/s upstream modem for use in the general switched telephone

What is specified in a modem recommendation?

- Data signaling rates, symbol rates, carrier frequencies pre-emphasis, scrambler, framing, encoder
- Interface circuits
- Start-up signals and sequences
- Operating procedures
- Testing conditions
- There are two kind of modems specified by ITU-T:
- Digital modems: Generates G.711 signals and receives V.34 signals passed through a G.711 encoder. Connected to a <u>digital switched</u> <u>network</u> through a digital interface
- Analog modems: Generates V.34 signals and receives G.711 signals that have been passed through a G.711 decoder in an <u>analog PSTN</u> <u>local loop</u>

G.711 (11/88) - Pulse code modulation (PCM) of voice frequencies V.34 (02/98) - A modem operating (up to 33 600 bit/s) for use in 2-wire analog P\$\frac{1}{2}TN

An extract from G.711

1 General

The characteristics given below are recommended for **encoding voice-frequency signals**.

2 Sampling rate

The nominal value recommended for the sampling rate is **8000** samples per second. The tolerance on that rate should be \pm 50 parts per million (ppm).

3 Encoding law

- 3.1 **Eight binary digits per sample** should be used for international circuits.
- 3.2 Two encoding laws are recommended and these are commonly referred to as the **A-law** and the **mlaw**. The definition of these laws is given in Tables 1a/G.711 and 1b/G.711 and Tables 2a/G.711 and 2b/G.711 respectively.

V.34 Modem specifications

ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU **V.34**

(02/98)

SERIES V: DATA COMMUNICATION OVER THE TELEPHONE NETWORK

Interfaces and voiceband modems

A modem operating at data signalling rates of up to 33 600 bit/s for use on the general switched telephone network and on leased point-to-point 2-wire telephone-type circuits

V.34 Modem specifications

ITU-T V-SERIES RECOMMENDATIONS

DATA COMMUNICATION OVER THE TELEPHONE NETWORK

General	V.1–V.9
Interfaces and voiceband modems	V.10-V.34
Wideband modems	V.35-V.39
Error control	V.40-V.49
Transmission quality and maintenance	V.50-V.59
Simultaneous transmission of data and other signals	V.60-V.99
Interworking with other networks	V.100-V.199
Interface layer specifications for data communication	V.200-V.249
Control procedures	V.250-V.299
Modems on digital circuits	V.300-V.399

For further details, please refer to ITU-T List of Recommendations.

5.4.1 Transmit spectrum specifications

The transmit spectrum specifications use a normalized frequency, which is defined as the ratio f/S, where f is the frequency in Hz and S is the symbol rate.

The magnitude of the transmitted spectrum shall conform to the templates shown in Figures 1 and 2 for normalized frequencies in the range from (d/e-0.45) to (d/e+0.45). The transmitted spectrum shall be measured using a 600 Ω pure resistive load. See also Tables 3 and 4.

NOTE – Tolerance for transmit spectrum is ± 1 dB.

Figure 1/V.34 - Transmit spectra templates for indices 0 to 5

Table 5/V.34 - Interchange circuits for combined primary and secondary channel interfaces

Interchange circuit Notes Description No. Signal ground or common return 102 Transmitted data 103 Received data 104 105 Request to send Ready for sending 106 107 Data set ready 108/1 or Connect data set to line 108/2 Data terminal ready 109 Data channel received line signal detector Transmitter signal element timing (DTE source) 113 114 Transmitter signal element timing (DCE source) 2 115 Receiver signal element timing (DCE source) 2 125 Calling indicator 133 Ready for receiving 3 140 Loopback/maintenance Local loopback 141 Test indicator 142 118 Transmitted secondary channel data Received secondary channel data 119 Transmit secondary channel line signal 4, 5 120 Secondary channel ready 4, 5 121 Secondary channel received line signal detector 122 4, 5, 6

V.34 Modem specifications

Figure 13/V.34 - Transmit spectrum template for INFO modulation

Connecting V.34 (33.6 kb/s) modem

A-law: in Europe, m-law:in the US

Fax communications over PSTN

- Faxes follow standard PSTN modem communications recommendations or IEEE recommendations, as V.17 (02/91) (- Wire modem for facsimile applications with rates up to 14 400 bit/s)
- Faxes are divided into groups:
 - Group 1 (´68): Analog scanning, 2400 bits/s
 - Group 2 (´76): Analog scanning, 4800 bits/s
 - Group 3 (´80): Digital scanning, 14400 bits/s
 - Group 4 (*84): Digital scanning, 64 kbit/s (ISDN)
- Example of modules in group 3 transmitting fax:

PSTN in ITU-T standards (www.itu.org)

- Series D Recommendations General <u>tariff</u> principles
- <u>Series E</u> Recommendations Overall network <u>operation</u>, telephone service, service operation and human factors
- <u>Series G</u> Recommendations <u>Transmission</u> systems and media, digital systems and networks
- Series I Recommendations Integrated services digital network (ISDN)
- <u>Series M</u> Recommendations Network <u>maintenance</u>: international transmission systems, telephone circuits, telegraphy, facsimile, and leased circuits

ITU: International Telecommunications Union

More PSTN standards (www.itu.org)

- <u>Series O</u> Recommendations Specifications of <u>measuring</u> <u>equipment</u>
- <u>Series P</u> Recommendations Telephone <u>transmission</u> <u>quality</u>, telephone installations, local line networks
- <u>Series Q</u> Recommendations <u>Switching</u> and <u>signaling</u>
 (Signaling Systems no: 4,5,6, and 7, Register Signaling no: R1, R2, IN Service)
- <u>Series V</u> Recommendations <u>Data communication</u> over the telephone lines

Example: Q-recommendations: Switching and signalling*

(Illustrative examples denoted by arrows)

	nternational Telecommunication Union Our Sites News Events Publications Site Map About Us	Français Espa Print versio				
<u>н</u>	ome: ITU-T: Publications: Recommendations: Series Q What's Ne	Search Recommendations - Shopping of				
Switching and si	gnalling					
Q.1	Signal receivers for manual working					
Q.2	Signal receivers for automatic and semi-automatic working, used for manual working					
Q.4	Automatic switching functions for use in national networks					
Q.5	Advantages of semi-automatic service in the international telephone service					
Q.6	Advantages of international automatic working					
Q.7	Signalling systems to be used for international automatic and semi-automatic telephone working					
Q.8	Signalling systems to be used for international manual and automatic working on analogue leased circuits					
Q.9	Vocabulary of switching and signalling terms					
Q. 10	Definitions relating to national and international numbering plans					
Q.11bis	Numbering plan for the ISDN era					
Q.11ter	Timetable for coordinated implementation of the full capability of the numbering plan for the (Recommendation E.164)	e ISDN era				
Q.12	Overflow - alternative routing - rerouting - automatic repeat attempt					
Q.13	International telephone routing plan					
Q.14	Means to control the number of satellite links in an international telephone connection					
Q. 15	Nominal mean power during the busy hour					
Q.16	Maximum permissible value for the absolute power level of a signalling pulse					
Q. 20	Comparative advantages of "in-band" and "out-band" systems					
Q.21	Systems recommended for out-band signalling					
Q.22	Frequencies to be used for in-band signalling					
Q. 23	Technical features of push-button telephone sets					
Q. 24	Multifrequency push-button signal reception					
		3				

4

Switching and signalling (cont.)

Q.52	Signaling between international switching centers and stand-alone echo control devices
Q.55	Signalling between signal processing network equipment (SPNE) and international switching centres (ISC)
Q.56	Signalling between signal processing network equipment (SPNE) and international switching centres (ISC) over an IP network
Q.65	The unified functional methodology for the characterization of services and network capabilities
Q.68	Overview of methodology for developing management services
Q.71	ISDN circuit mode switched bearer services
Q.72	Stage 2 description for packet mode services
Q.76	Service procedures for Universal Personal Telecommunication - Functional modelling and information flows
Q.80	Introduction to stage 2 service descriptions for supplementary services
Q.81.1	Direct dialling-in
Q.81.2	Multiple subscriber number
Q.81.3	Calling line identification presentation (CLIP) and calling line identification restriction (CLIR)
Q.81.5	Connected line identification, presentation and restriction (COLP) and (COLR)
Q.81.7	Malicious call identification (MCID)
Q.81.8	Sub-addressing (SUB)
Q.82.1	Call transfer
Q.82.2	Call forwarding
Q.82.3	Call deflection
Q.82.4	Line hunting
Q.82.7	Explicit call transfer
Q.83.1	Call waiting (CW)
Q.83.2	Call hold
Q.83.3	Stage 2 description for call completion supplementary services : Completion of call to busy subscriber
Q.83.4	Terminal portability
Q.84.1	Conference calling (CONF)
 P 194000000000000000000000000000000000000	

HUT Comms Lab., Timo O. Korhonen

If you don't find it from Recommendations something is lost: How to use pay phones?

 Recommendation E.134 (03/93) - Human factors aspects of public terminals: Generic operating procedures

Terminal type	User action						
	Initialization	Means of payment	Identification	Communication	Next	End	
Payphone	Lift handset	Insert means of payment	Input number (Address)	Transfer information	Press desig- nated button	Replace handset	
Public fax (Sendmode)	Place document	Insert means of payment	Input number	Transfer information	Press desig- nated button	Automatic	
Public fax (Receive mode)	Place document	Insert means of payment	Input number (of Network Node)	Transfer information	Press desig- nated button	Automatic	
Public Videotex		Insert means (if required)	Select option	Transfer information	Select another option		

Present-day PSTN services

Value Added

Supplementary

- Basic service
 - bearer service (local loop access): analog (/ISDN)
- Value-added services (telephonist-originated) services as
 - directory inquiry (118)
 - weather, stock exchange, ticket reservation ...
- Supplementary services (Intelligent Terminal (IN) implementation)
 - distributed supplementary as 'call forwarding unconditional' (Q.82.2), 'call waiting', 'queuing' ...
 - centralized supplementary services (IN) use specialized routing & charging as VPN, credit card calls, free phone (receiver pays), universal access number (connected automatically to the nearest office), ...

PSTN today summarized

- ISDN very popular in switches (in Finland all-digital exchanges)
- ISDN getting popular also for local loop access
- Versatile access part (analog/digital terminals possible)
- Conventional local loop technology develops fast
- Remote controlled O&M
- IN services fully-developed Intelligence moves to terminals
- Fiber-optical **DWDM** links connect exchanges
- Common channel signaling (SS7)
- SDH-based (Synchronous Digital Hierarchy) trunknetworking
- Gets still more subscribers!

Switching: Transfer modes & connections

Transfer modes

PSTN

Circuit switching

- developed for voice
- nowadays also for data
- well-specified delays
- echo problems

Packet switching

- developed for data
- nowadays also for voice
- Statistical multiplexing
- variable delays

Ethernet

Connection types

ATM

Connection oriented

- hand-shaking
- Frame-relay
- strict error requirements
- for fast data transfer

X.25

Connectionless

- broadcasting
- modest error rates often accepted
- fast data in good channels

UDP*