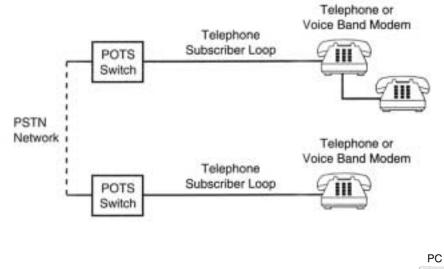
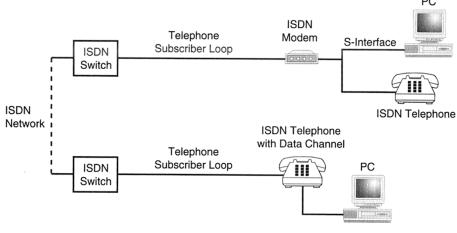
Asymmetrical Digital Subscriber Line (ADSL)


Asymmetrical Digital Subscriber Line

- Background
 - historical review
 - motivation for developing ADSL
- DSL end-to-end environment and reference model
- Line environment characteristics of local loop (LL)
- Why conventional modems don't work so well in LL?
- Modem technology in ADSL
- DSL flavors: ISDN (!), HDSL, ADSL, VDSL ...
- Standards

Short history of ADSL

1985	Bell Labs discovers a new way to make traditional copper wires to support new digital services - especially video-on-demand (VOD)
1990	Phone companies start deploying High-Speed DSL (HDSL) to offer <u>T1 service</u> on copper lines without the expense of installing repeaters - first between small exchanges
	Phone companies begin to promote HDSL for smaller and smaller companies and <u>ADSL for home internet access</u>
	1993 evaluation of three major technologies for ADSL: <u>QAM</u> , <u>DMT</u> and <u>CAP</u>
1995	Innovative companies begin to see ADSL as a way to meet the need for <u>faster Internet access</u>
1998 1999	DMT was adopted by almost all vendors following <u>ANSI T1.413 - issue 2</u> (in contrast to CAP) ITU-T produced UADSL <u>G.992.2</u> (<u>G.lite</u>) and <u>G.922.1</u> (G.full)

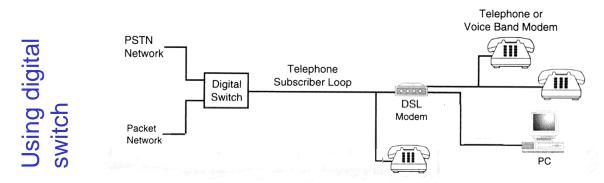

History of digital access in PSTN

Through analog voice:

- Connecting a voice-band modem (as V.90)
- No switch or network infra changes

The first DSL technique

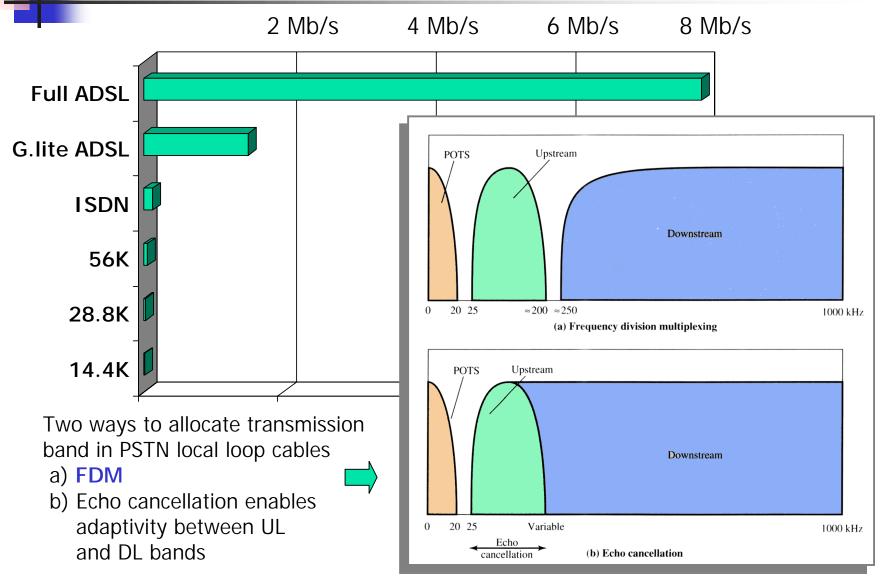
Through ISDN switch:


- Yields basic rate interface (BRI)
- •Fixed throughput 2B+D

Digital access in PSTN (cont.)

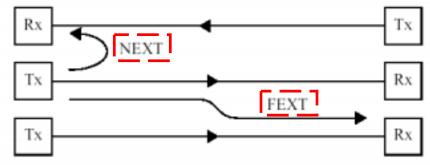
Requires new in-house wiring here

POTS FDM splitters separate voice and DSL channels

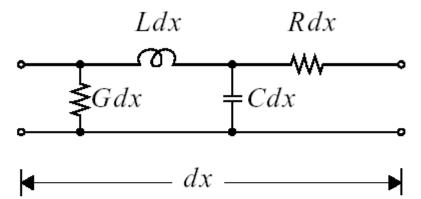

 Next generation intelligent switch recognizes subscriber devices and adjusts its HW parameters (PSTN telephone, voice-band modem, DSL modem)

Motivation for adaptation of ADSL

- Need for <u>high-speed Internet access</u> also telephone modem speeds have peaked and cable modems have turned out to lack speed *with many users*
- DSL means methods to transmit <u>high speed data to local</u> <u>loop</u> by using unshielded 2-wire twisted pairs
- DSL allows rates varying from <u>160 kb/s up 50 Mb/s</u> on down link (DL) depending on technology used!
- In the most popular commercial ADSL maximum rate 640 kbit/s upstream and 8 Mb/s downstream
- Different operation modes developed to serve symmetric and asymmetric traffic requirements and different rates (STM and ATM supported by ADSL)


STM-n: Synchronous Transfer Module (of SDH): DS-1,2: 1.544 Mb/s, 6.312 Mb/s ATM: Asynchronous Transfer Mode DL: Down Link - Down stream

ADSL rates (DL) and channel frequency band allocation in local loop


ADSL challenge: bad quality local loop cables

- Attenuation: Frequency dependent (next slides)
- Crosstalk:
 - Near-end crosstalk (NEXT) appears between TX and RX of the near-end
 - Far-end crosstalk (FEXT) appears between TX and RX of the far-end
- Interference: other lines, overlapping RF-spectra
- Bridged taps, loading coils
- Weather-conditions (moisture, temperature) affect crosstalk and line impedance

Modeling the loop cable

Modeled as a transmission line.

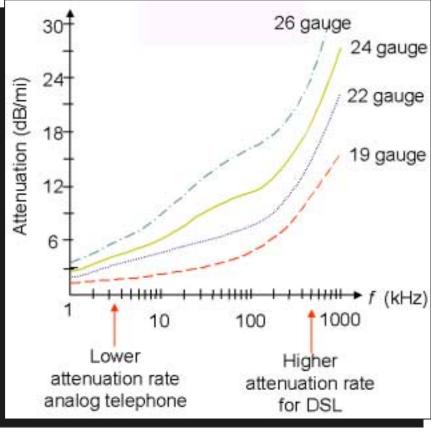
Twisted-Pair Typical Parameters:

- $R(f) = (1+j)\sqrt{f/4} \Omega/km$ due to the skin effect
- L = 0.6 mH/km (relatively constant above 100kHz)
- $C = 0.05 \ \mu F/km$ (relatively constant above 100kHz)
- G = 0

Cable attenuation

Cable gain in dB is

$$H_{dB}(d, \omega) \approx -k_R \times d \times \sqrt{\omega}$$


- k_R cable constant (typically 0.008)
 - d cable distance in km
 - ω frequency in rad/s
- Attenuation in dB is proportional to cable length
 - 2x distance doubles attenuation in dB
 - reduce atten by using larger diameter cable
- Attenuation also proportional to root-frequency
 - 4x frequency doubles attenuation in dB
 - fast rolloff once attenuation reaches 20dB

Twisted cables

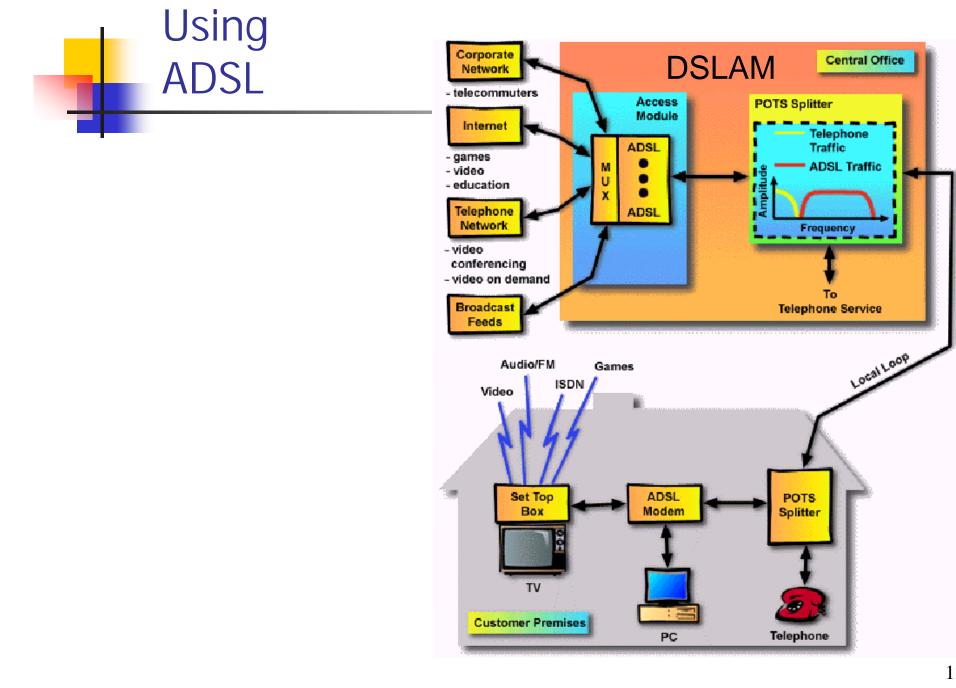
- Comes in different wire thickness, e.g. 0.016 inch (24 gauge)
- The longer the cable, the smaller the bandwidth

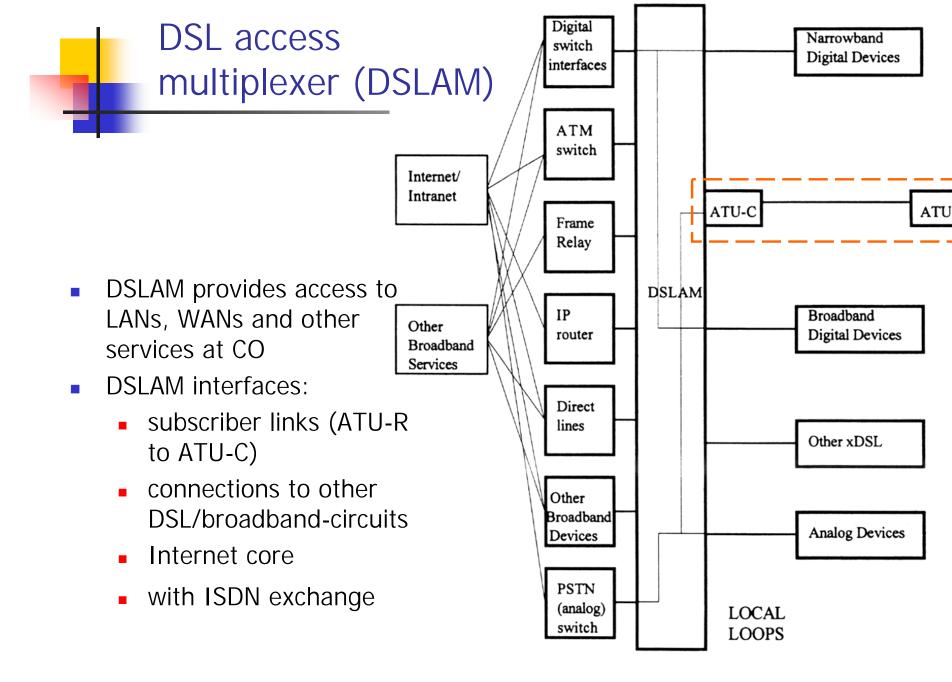
Standard	Data Rate	Distance
DS-1	1.544 Mbps	18,000 feet, 5.5 km
DS-2	6.312 Mbps	12,000 feet, 3.7 km
1/4 STS-1	12.960 Mbps	4500 feet, 1.4 km
1/2 STS-1	25.920 Mbps	3000 feet, 0.9 km
STS-1	51.840 Mbps	1000 feet, 300 m

xDSL data rates for 24-gauge twisted pair

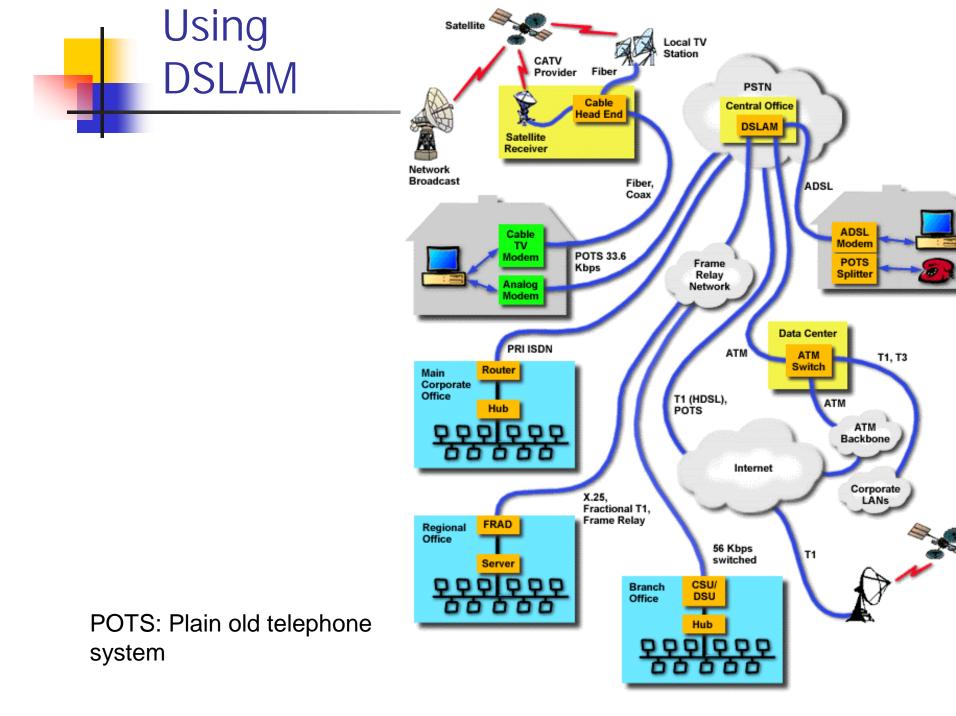
Twisted cable attenuations

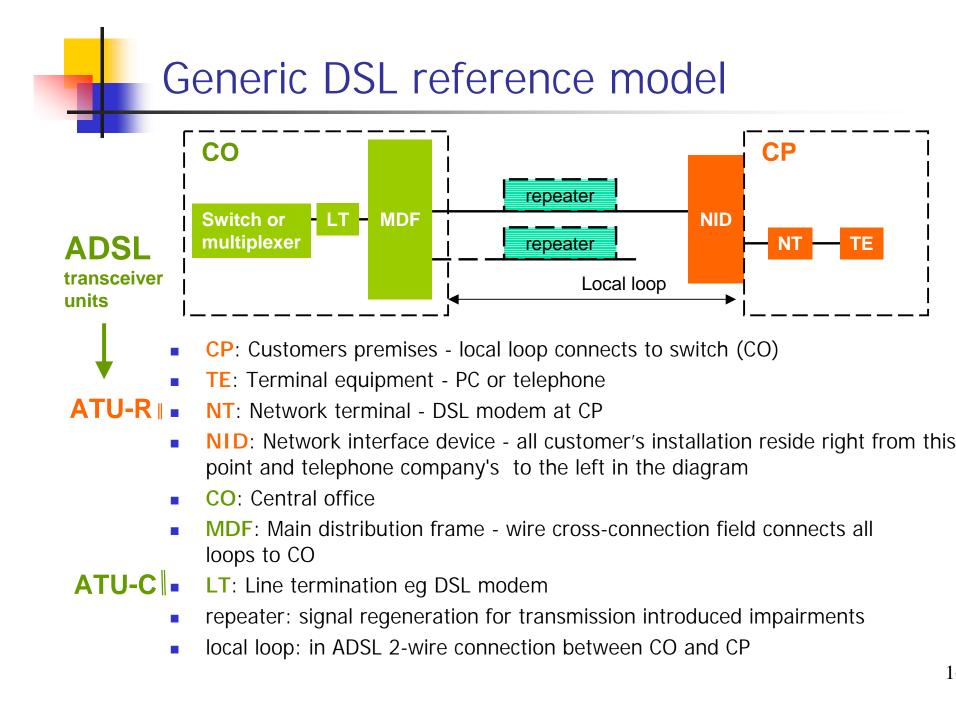
DS-1,DS-2: Digital Signal 1,2

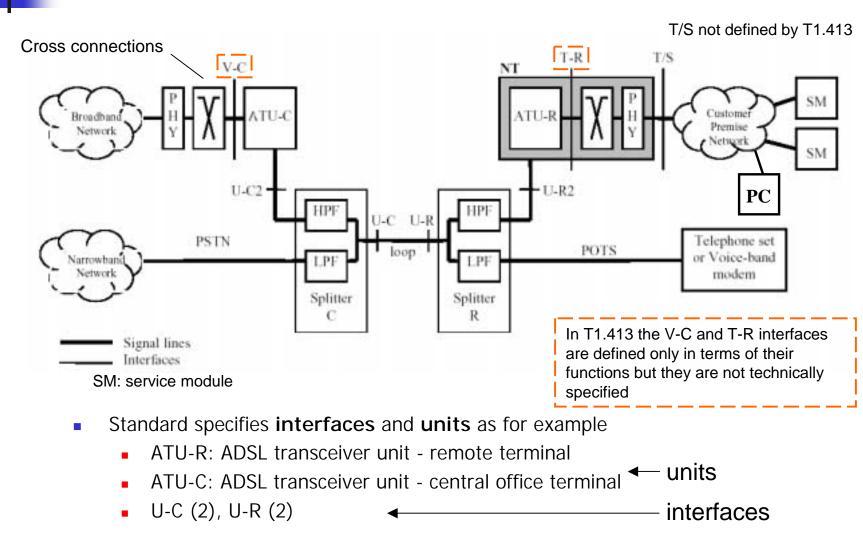

Synchronous Digital Hierarchy (SDH) levels

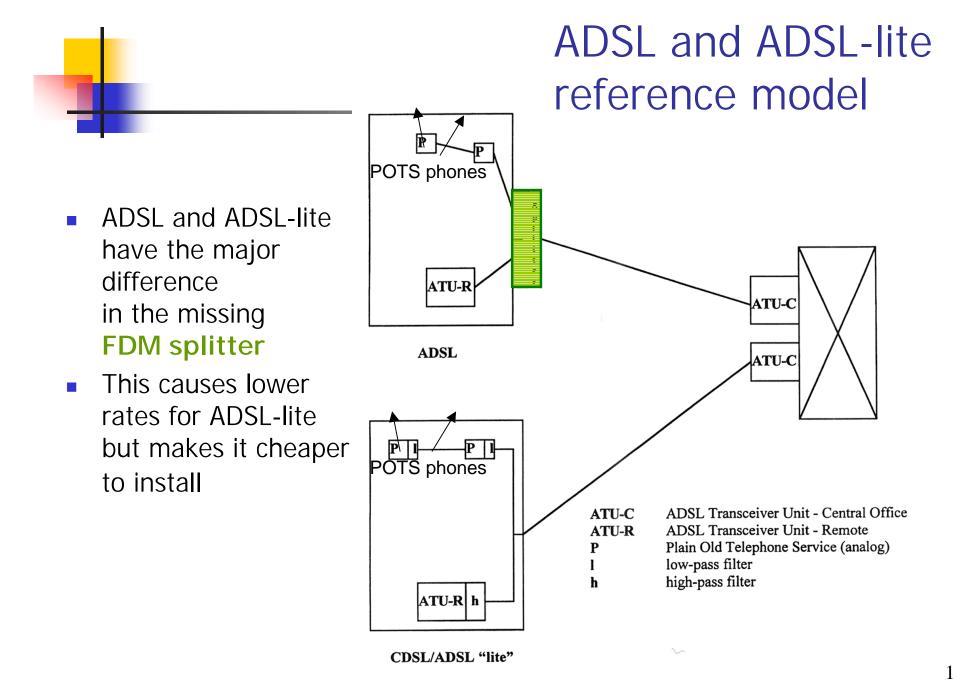

STS-1: Synchronous Transport Signal level-1, Synchronous Optical Network's (SONET) physical level signal

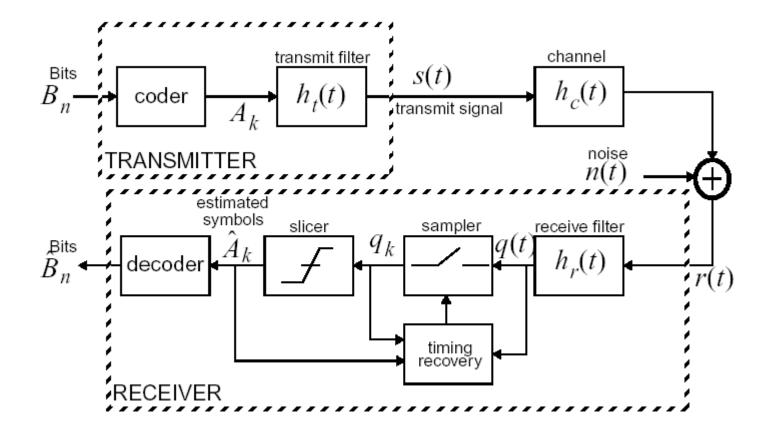
ADSL meets local loop challenges

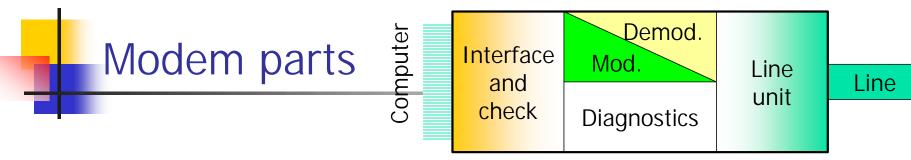

- Restricted bandwidth
 - careful allocation of bits for each sub-carrier
- Changing circumstances (whether, bridged taps)
 - Adaptive setup phase
- High attenuation
 - Usage of relatively high bandwidth for transmission
- Compatibility to old POTS
 - Own band for POTS by FDM (splitters)
- Interference and cross-talk
 - Coding
 - Interleaving
 - Modulation (OFDM/DMT)
 - Echo cancellation


Note: loading coils must be removed from cables in order to ADSL to work




CENTRAL OFFICE



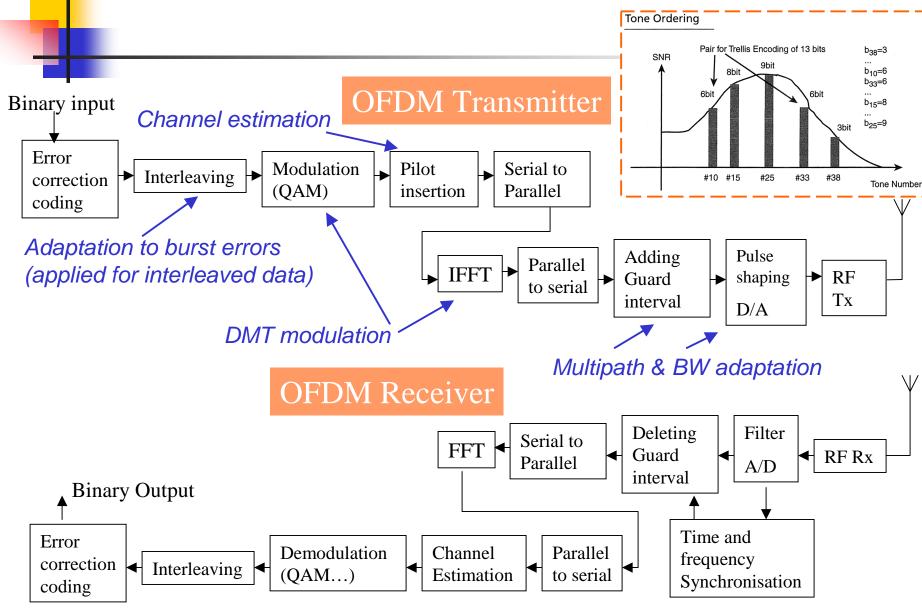

What is specified in ADSL standard? ANSI T1.413 ADSL reference model:

Reference in physical level: A baseband system

- Analog parts
 - analog transmit and receiver filters
 - DAC, automatic gain control, ADC
- Digital parts
 - modulation/demodulation
 - coding/decoding
 - Reed-Solomon
 - Trellis
 - bit packing/unpacking (compressed transmission)
 - framing
 - scrambling

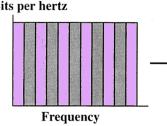
Modem technology

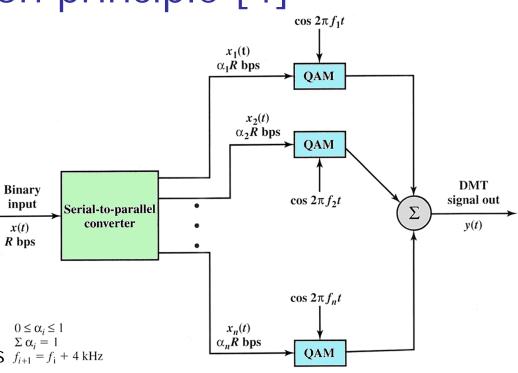
- Conventional modem modules:
 - Constellation mapping
 - Interleaving (convolutional)
 - Symbol/bit conversion
 - Timing recovery
- Advanced techniques for DSL:
 - Carrierless AM/PM (CAP) or QAM line codes (97% of USA installations apply this method)
 - Fast Fourier Transforms for Discrete Multi-Tone Modulation (DMT) - the dominant method
 - tone ordering -> water pouring bit allocations (adaptation to transfer function) & peak-to-average ratio (PAPR) decrease
 - channel equalization (tone-by-tone different rates)
 - guard intervals (adaptation to channel delay spread)
 - Turbo coding
 - Adaptive echo canceller

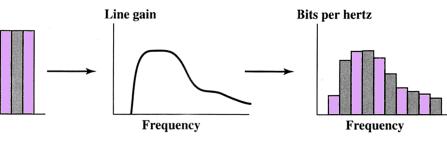

RADSL start-up phases

- RADSL (rate adaptive DSL) modems apply sophisticated hand shaking to initiate transmissions that include
 - Activation: notice the need for communications
 - Gain setting/control: Adjust the power for optimum transmission and minimum emission
 - Synchronization: Clocks and frames to the same phases
 - Echo cancellation (if used required for both ends)
 - Channel identification and equalization
- In DMT modulation during the handshaking active channels are decided and bit rates assigned for them

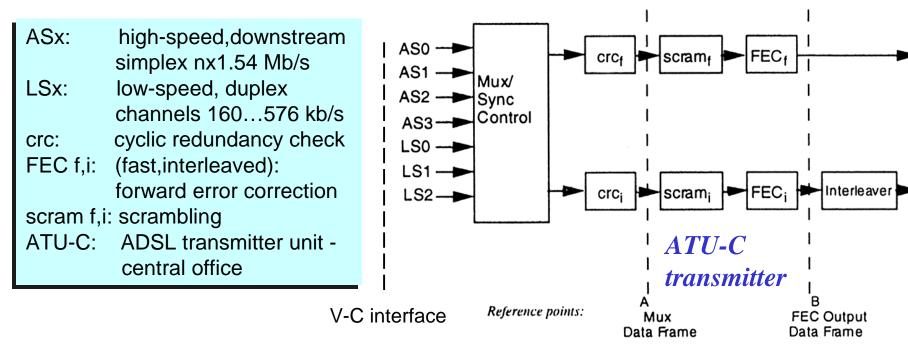
Multi-tone modulation (cont.)


- In channel activation phase different sub-channels are allocated for their optimum rates (by changing number of levels in modulation)
- DMT-ADSL supports both synchronous transfer modules (STM) of SDH and asynchronous transfer mode (ATM, AS0 used for primary cell stream)
- DMT defines two data paths: fast and interleaved
- Fast
 - low latency (2ms)
 - real-time traffic
- Interleaved
 - Iow error rate
 - Reed-Solomon encoding (concatenated convolutional codes) at the expense of increased latency


ADSL is based on OFDM/DMT


DMT modulation principle [4]

- Transmission band divided into 4 kHz subchannels
- Tone ordering: On initialization test-tone determines number levels in QAM for each subchannel (each can carry 0 - 60 kb/s)
- Number of subchannels is 256 - theoretical maximum rate 15.36 Mb/s
- Current rates 256 kb/s ... 8 Mb/s $f_{i+1} = f_i + 4 \text{ kHz}$ depending on line conditions and operator specifications in ADSL Bits per hertz


Discrete Multi-tone (DMT) modulation

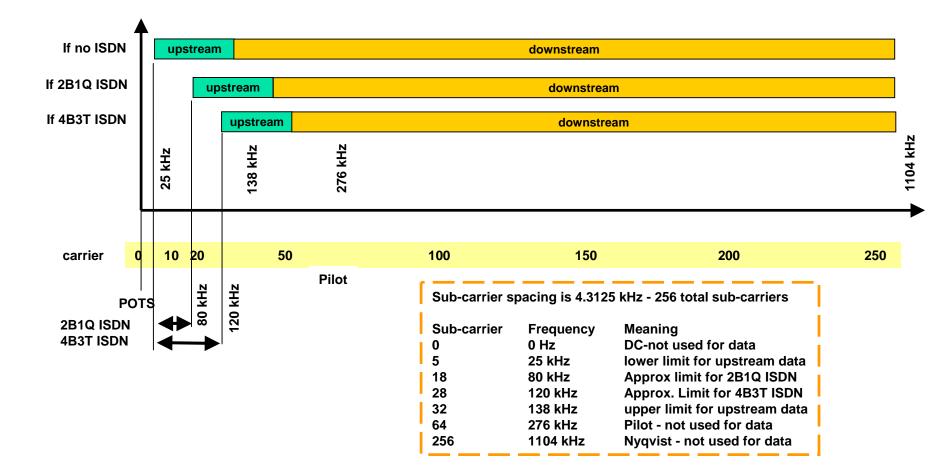
Tone ordering (bit-loading)

Discrete multi-tone (DMT) modulation [3]

- ANSI T1.413 specifies DMT modem for ASDL applications
- Downstream:
 - 2.208 MHz sampling rate, 256 tones 0 ... 1.104 MHz
 - Symbol rate 4000 symbols /s. Each sub-channel is 4.3 kHz wide
 - max rate 32 kb/s per channel (compare to V.90 modem)
- Upstream:
 - 275 kHz sampling rate, 32 tones 0 … 138 kHz

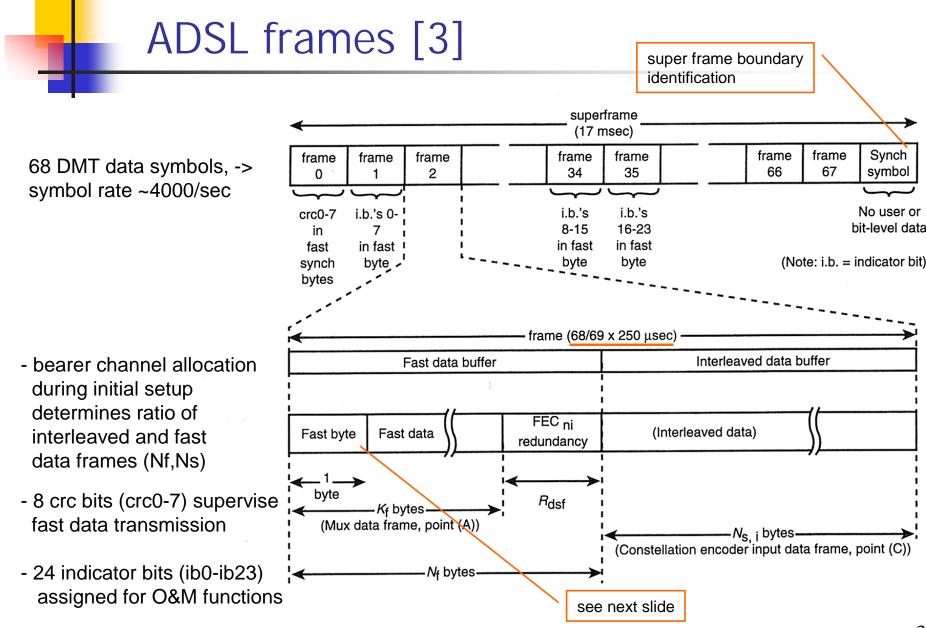
Usage of subchannels (ANSI T1.413)

 Downstream simplex bearer rates in different transport classes (CO->CP):


Transport class	1	2	3	4
Maximum capacity Mb/s	6.144	4.608	3.072	1.536
	1.536	1.536	1.536	1.536
options:	3.072	3.072	3.072	
-	4.608	4.608		
_	6.144			
Maximum active subchannels	AS0 -AS3	AS0 -AS2	AS0 -AS1	AS0

Usage of subchannels (ANSI T1.413)

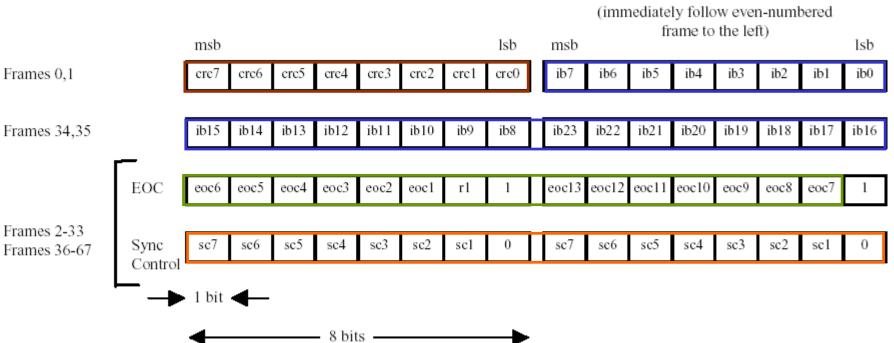
• **Duplex** bearer rates:


Transport class	1	2	3	4
Maximum capacity Mb/s	0.640	0.608	0.608	0.176
	0.576	0.576	0.576	0.160
options:	0.384	0.386	0.384	0.016
-	0.160	0.160	0.160	
	0.064	0.064	0.064	
Maximum active subchannels	LS0 -LS2	LS0 -LS1	LS0 -LS1	LS0 -LS1

DMT spectra / ISDN linecodes [2]

ADSL system total data rate

- Total data rate=Net data rate + System overheads
- The net data rate is transmitted in the ADSL bearer channels
- ADSL system overheads
 - an ADSL embedded operations channel, eoc
 - an ADSL overhead control channel, aoc
 - crc check bytes
 - fixed indicator bits for O&M*
 - Reed-Solomon FEC redundancy bytes
- These data streams are organized into ADSL frames and super-frames for the downstream and upstream data

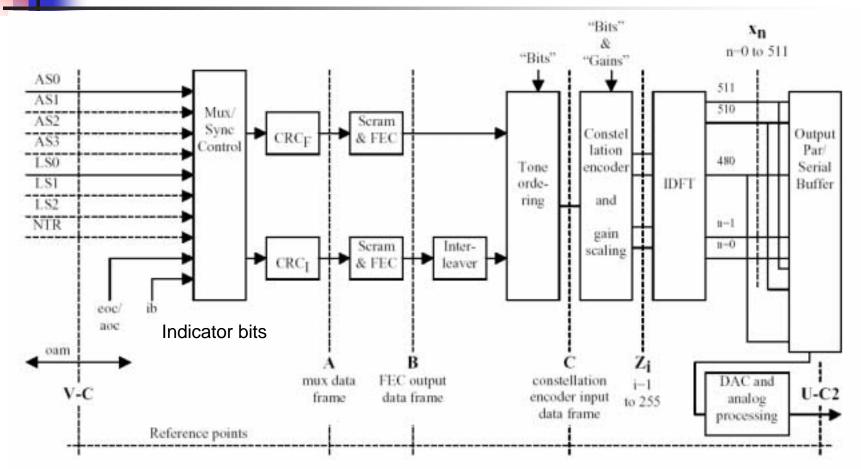


Fast sync - byte [3]

Frames 0,1

Frames 2-33

EVEN NUMBERED FRAMES


ODD NUMBERED FRAMES

- crc: cyclic redundancy check
- ib: indicator bits (O & M)

eoc: embedded operations channel (O & M of ATU-C and ATU-R)

sc: synchronization control

ATU-C transmitter reference model for STM* transport [3]

Asx: any one of the simplex bearer channels AS0, AS1, AS2 or AS3 LSx: any one of the duplex bearer channels LS0, LS1 or LS2 NTR: Network Timing Reference: 8 kHz reference transmitted downstream aoc: ADSL overhead control channel *Synchronous transfer module eoc: embedded operations channel of SDH (Synchronous Digital Hierarchy)

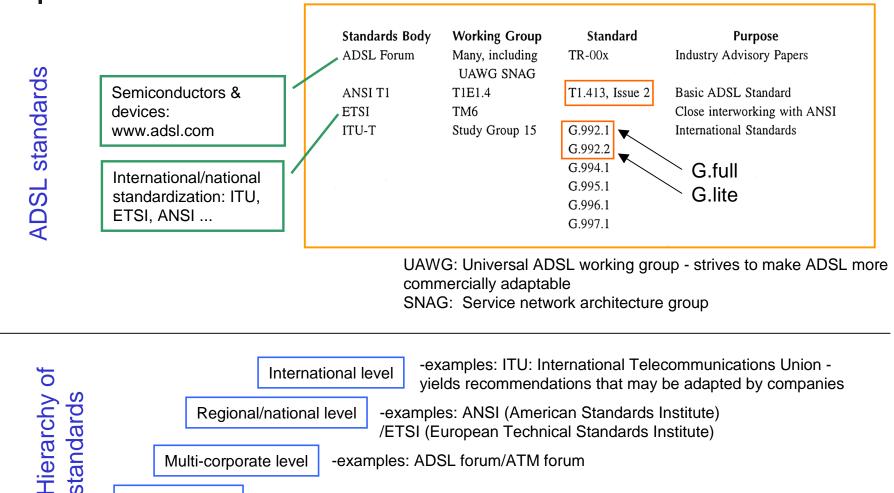
xDSL- systems

- HDSL -- High Bit Rate DSL
 - <u>1.544 Mbps</u> (T1) or <u>2.048 Mbps</u> (E1) symmetrical
 - channel associated signaling
 - 2- or 4-wire connections
- ADSL -- Asymmetric DSL
 - up to 8 Mbps downstream and 640 Kbps upstream
 - ATM / STM compatible
 - 2-wire compatible
 - requires splitter and separate phone line from box to wall
- CDSL -- Consumer DSL/ADSL-lite
 - ATM (Q.2931) signaling only
 - up to 1.555 Mbps downstream and 512 Kbps upstream
 - reduced options, performance, cost, easy to install

xDSL- systems (cont.)

- RDSL -- Rate-Adaptive DSL
 - <u>adjusts transmission rates</u> in both directions to obtain the best speed under prevailing conditions
 - otherwise like ADSL
- SDSL -- Symmetric DSL
 - one pair of copper wire used, <u>774 kbps</u>
 - channel associated signaling or Q.921
- VDSL -- Very-High-Bit-Rate DSL
 - speeds up to <u>13- 52 Mbps DL</u>, <u>1.5-2.3 Mbps UL</u>, but for only short distances, applies ATM

xDSL systems (cont.)


- BRI ISDN (Basic Rate ISDN interface)
 - uses existing ISDN equipment, but in 'always on' mode instead of as a dial-up service. Yields 2B+D
 - up to 128 kbps + 16 kbps or X.25 with 160 kbps
 - signaling Q.921/Q.931
 - designed for speech networks
- V.90
 - 56 kbps DL, 33.6 kbps UL
 - signaling analog
 - for speech network

xDSL systems/rates/repeater spacing

ADSL	Asymmetric Digital Subscriber Line	Asymmetric: Downstream: 1.5Mbps -> 8Mbps Upstream: 16Kbps -> 640Kbps Range : 5400 m - 1.544Mbps 4800 m - 2.048Mbps 3600 m - 6.312Mbps 2700 m - 8.448Mbps	Internet access VoD and video access services Remote LAN access Interactive multimedia
VDSL	Very High Data Rate Digital Subscriber Line	Asymmetric: Downstream: 13Mbps -> 52Mbps Upstream: 1.6Mbps -> 2.3Mbps Range: 1350 m - 12.96Mbps 900 m - 25.82Mbps 300 m - 51.84Mbps	Same as ADSL and HDTV

DSL	Digital Subscriber Line	Duplex: 160K (2B+D+Management)	ISDN service Voice and data communications
HDSL	High Data Rate Digital Subscriber Line	Duplex: 2 x T.1 (1.544Mbps) / 2 x E.1 (2.048Mbps) 2 to 4 pairs of copper- wire Range : 3600 meter	T.1 and E.1 service
SDSL	Single Line Digital Subscriber Line	Duplex:2 x T.1 (1.544Mbps) / 2 x E.1 (2.048Mbps) 1 pair of copper-wire Range : 3000 meter	Premises access for synchronous services

Standards

Corporate level -open or proprietary standard created by a company

See also:

http://www.ktl.com/testing/telecoms/xdsl-standards.htm

Peak to T1.413 table of contents

4	Reference models					
	4.1	I.1 System reference model				
	4.2	ATU-C	10			
		4.2.1	ATU-C transmitter reference model for STM transport	10		
		4.2.2	ATU-C transmitter reference model for ATM transport	11		
	4.3	ATU-F	12			
		4.3.1	ATU-R transmitter reference model for STM transport	12		
		4.3.2	ATU-R transmitter reference model for ATM transport	13		
5	Trans	14				
	5.1	Transport of STM data				
	5.2	2 Transport of ATM data				
	5.3	ADSL	16			
	5,4	Classi	18			
6	ATU-	19				
	6.1	STM 1	Transmission Protocol Specific functionalities	19		
		6.1.1	ATU-C input and output V-C interfaces for STM transport	19		
		6.1.2	Downstream simplex bearer channels – bit rates	19		
		6.1.3	Downstream/upstream duplex bearer channels - bit rates	19		
		6.1.4	Payload transfer delay	20		
		6.1.5	Framing structure for STM transport	20		
	6.2	ATM 1	Fransport Protocol Specific functionalities	20		
		6.2.1	ATU-C input and output V-C interface for ATM transport	20		
		6.2.2	Payload transfer delay	21		

6.3	Netwo	rk timing reference	23
	6.3.1	Need for NTR	23
	6.3.2	Transport of the NTR	23
	6.3,3	Accuracy requirements	24
6.4	Framin	ng	24
	6.4.1	Data symbols	25
	6.4.2	Synchronization	33
	6.4.3	Reduced overhead framing	36
6.5	Scram	ablers	37
6.6	Forwa	38	
	6.6.1	Reed-Solomon coding	39
	6.6.2	Interleaving	39
	6.6.3	Support of higher downstream bit rates with S=1/2	40
6.7	Tone of	ordering	40
6.8	Conste	42	
	6.8.1	Bit extraction	42
	6.8,2	Bit conversion	43
	6.8,3	Coset partition and trellis diagram	45
	6.8,4	Constellation encoder	48
6.9	Const	ellation encoder (without trellis coding)	52
	6.9.1	Bit extraction	52
	6.9.2	Constellation encoder	52
6.10	Gain s	scaling	53
6.11	Modul	53	

+

References

[1] T. Starr, J.M. Cioffi, P.J. Silverman: Understanding Digital Subscriber Line Technology, Prentice-Hall

- [2] W.Y. Chen: DSL Simulation Techniques and Standards -Development for Digital Subscriber Line Systems, MacMillan Tech. Publishing
- [3] C.K. Summers: ADSL Standards, Implementation and Architecture, CRC Press
- [4] William Stallings: Data and Computer Communications (7th Ed), Prentice Hall

[5] ANSI T1.413, issue 2 standard