ATM (\& B-ISDN)

(ATM = Asynchronous Transfer Mode)

- ATM is a connection-oriented, cell-based technique for the transfer of information
- ATM is not equivalent with B-ISDN
- The concept of QoS is important
- ITU-T (I-series) vs. ATM Forum recs/specs
Why use ATM?

Conventional circuit switched connection:
- After initial setup no processing in network nodes
- Fixed bit rates, fixed time delay

Conventional packet switched connection:
- Flexible bandwidth allocation due to statistical multiplexing, varying time delay
- Complex processing in network nodes

ATM somewhere in between:
- Minimal node processing, statistical multiplexing
Characteristics of ATM

ATM is a connection-oriented technique \(\leftrightarrow\) the information in form of cells is routed through the network along a single path. Cells are always received in sequence.

The digital information is packed into ATM cells (5 octets header + 48 octets payload). Cells are transmitted through the network independently. Statistical multiplexing is possible.

An ATM connection is by definition unidirectional.

ATM supports (will support) higher layer service adaptation, different degrees of QoS and traffic management.
ATM is not equivalent with B-ISDN

ATM is a transmission technique which can be employed anywhere, wherever the network conditions permit:

a) A company can implement its own ATM network, leasing physical lines from a network operator.

b) A network operator could use ATM for internal traffic (so long as certain QoS conditions are fulfilled).

c) Network operators may also provide fixed ATM connections for certain subscribers on a permanent contract basis (Permanent Virtual Circuits = PVC)

⇔ no signaling required, traffic management is optional!
B-ISDN is not equivalent with ATM

B-ISDN is (at least in practice) based on ATM. However, B-ISDN is a public network. In B-ISDN, there are the following two options:

a) Permanent Virtual Circuits (PVC), set up by the operator on a long-term contract basis

b) Switched Virtual Circuits (SVC), controlled by user signaling (ITU-T Q.2931).

Before a public switched ATM network can be implemented, a number of complex issues must be standardized (signaling, traffic management).
ITU-T Protocol reference model

- **Management plane**
 - Control plane
 - User plane

- **Higher protocol layers**
- **AAL layer**
- **ATM layer**
- **Physical layer**

- **End-to-end connection**
- **ATM cell switching**
- **STM-N or cell-based**
ATM network connection

Originating node
- Upper layer
- AAL
- ATM layer
- Physical layer

ATM network nodes
- ATM layer
- Phy

Terminating node
- Upper layer
- AAL
- ATM layer
- Physical layer

- UNI VPI 1, VCI 1
- NNI VPI 2, VCI 2
- UNI VPI 3, VCI 3
Generic use of ATM within networks

1. ATM may complement IP based technology

 - **IP ubiquitous in future**
 - **network backbone based on ATM**

2. ATM may be replaced by IP based technology

 - **voice over IP**
 - **network backbone based on IP**
Functions of the Physical layer

1. The *physical medium sublayer* (lower sublayer) handles and adapts bits as they are fed to the physical medium (e.g., electro-optical conversion)

2. The *transmission convergence sublayer* (upper sublayer) converts the flow of cells from the ATM layer into a continuous bit stream (and vice versa), involving:
 - Cell rate decoupling (bit rate adaptation)
 - Cell delineation (generally using HEC)
 - Mapping of cells into, e.g., the VC-4 payload
 - Calculation and verification of HEC
Functions of the ATM layer

1. To create the ATM cell by generating / adding a header to the information field received from the AAL (and performing the reverse operation at the receiving end)

2. To multiplex and demultiplex the ATM cell flows from different connections using appropriate identifiers (VCI and VPI) located in the cell headers

3. To perform cell switching, routing, and/or relaying within the ATM network (also using VCI and VPI)

4. To provide mechanisms for flow control and other traffic management functions.
ATM cell header structure (UNI)

- **GFC**: Generic Flow Control
- **VPI**: Virtual Path Identifier
- **VCI**: Virtual Channel Identifier
- **PTI**: Payload Type Indicator
- **CLP**: Cell Loss Priority
- **HEC**: Header Error Control

NNI (between ATM network nodes): GFC => VPI
Virtual Path/Channel Connection

See Figure G.3.3 in "Understanding Telecommunications"

NOTE – VCI_a and VCI_b represent two of the possible values of VCI within the VP link with the value VPI_x. Similarly, VPI_x and VPI_y refer to two of the possible values of VPI within the physical layer connection.
Function of PTI bits (UNI)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>User data cell, no congestion. ATM user-to-ATM-user indication = 0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>User data cell, no congestion. ATM-user-to-ATM-user indication = 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>User data cell, congestion experienced. ATM-user-to-ATM-user indication = 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>User data cell, congestion experienced. ATM-user-to-ATM-user indication = 1</td>
</tr>
<tr>
<td>1 0 0</td>
<td>OAM F5 segment associated cell</td>
</tr>
<tr>
<td>1 0 1</td>
<td>OAM F5 end-to-end associated cell</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Resource management cell</td>
</tr>
<tr>
<td>1 1 1</td>
<td>Reserved for future VC functions</td>
</tr>
</tbody>
</table>

- 1 0 1 OAM F5 end-to-end associated cell is used for AAL functions (not really part of ATM layer)
ATM Adaptation Layer (AAL)

Implemented in the **terminal nodes only** (network aspects are not addressed, these are covered by the ATM layer)

CS: flow and timing control, error correction, handling of lost and misinserted cells, (also SAR functionality)

<table>
<thead>
<tr>
<th>SAR-PDU</th>
<th>ATM Layer PDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>payload</td>
<td>payload</td>
</tr>
<tr>
<td>hdr</td>
<td>hdr</td>
</tr>
<tr>
<td>ATM cell payload</td>
<td>ATM cell payload</td>
</tr>
<tr>
<td>higher layer data</td>
<td>higher layer data</td>
</tr>
</tbody>
</table>
AAL layer structure

Service Specific Part
Common Part (one per AAL)

Service Specific Convergence Sublayer
Common Part Convergence Sublayer
Segmentation and Reassembly Sublayer

may be many within same AAL layer
Service classes vs. AAL protocols

<table>
<thead>
<tr>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing sensitive</td>
<td>Timing insensitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBR</td>
<td>VBR (Variable bit rate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection-oriented</td>
<td></td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td>AAL 1</td>
<td>AAL 2</td>
<td>AAL 3/4, AAL 5</td>
<td></td>
</tr>
</tbody>
</table>

Speech
Circuit emulation

LAN emulation
Frame relay
AAL protocols

AAL 1: constant bit rate, small delay (variation)
(voice & video transport)

AAL 2: variable bit rate, small delay (variation)
(used in UMTS radio access network)

AAL 3/4: variable bit rate, not time sensitive, complex

AAL 5: variable bit rate, not time sensitive
no retransmission mechanisms
(UMTS RAN, LAN emulation, signaling)
AAL 2

When transmitting low bit rate signals, AAL 2 provides low packetization delay and high bandwidth efficiency.

AAL 2 not used => low delay but also low efficiency

AAL 2 used => multiplexing different signals into a single ATM cell payload in a flexible manner.
AAL 5

Simple and efficient => popular, has replaced AAL 3/4

CPCS-PDU

SAR-PDUs

ATM cell
ATM internetworking

Terminal

IWF

ATM network

Terminal

Upper layer

Service specific protocol (SSP)

PHY

SSP

SSCS

CP AAL

ATM

PHY

Service specific CS

Common part AAL

ATM

PHY

Service specific UNI

ATM UNI

PHY

PHY

PHY

PHY
ATM layer service performance

<table>
<thead>
<tr>
<th>ITU-T I.371 "Transfer Capability"</th>
<th>ATM Forum TM4.0 "Service Category"</th>
<th>Typical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic Bit Rate (DBR)</td>
<td>Constant Bit Rate (CBR)</td>
<td>Voice transmission</td>
</tr>
<tr>
<td>(for further study)</td>
<td>Real-Time Variable Bit Rate (RT-VBR)</td>
<td>Compressed video signal transmission</td>
</tr>
<tr>
<td>Statistical Bit Rate (SBR)</td>
<td>Non-Real-Time Var. Bit Rate (NRT-VBR)</td>
<td>Statistical multiplexing (data services)</td>
</tr>
<tr>
<td>Available Bit Rate (ABR)</td>
<td>Available Bit Rate (ABR)</td>
<td>Resource efficient transmission mode</td>
</tr>
<tr>
<td>(no equivalent)</td>
<td>Unspecified Bit Rate (UBR)</td>
<td>Best effort, no guarantees</td>
</tr>
<tr>
<td>ATM Block Transfer (ABT)</td>
<td>(no equivalent)</td>
<td>Burst level feedback control</td>
</tr>
</tbody>
</table>
DBR/CBR: Specified for connections that require a certain amount of bandwidth, characterized by a Peak Cell Rate (PCR) value that is continuously available during the entire connection lifetime. The source may emit cells at or below the PCR at any time and for any duration (or may be silent).

Typical applications:

1. Voice (standard 64 kbit/s PCM)
2. Video (uncompressed)
3. Circuit Emulation Services (CES), e.g. carrying PDH signals over ATM connections

This category is mainly intended for (but not restricted to) tightly constrained CTD and CDV services (see next slides).
DBR: The ITU-T recommends that this *Transfer Capability* be used for *QoS Class 1* with stringent QoS requirements and the following performance objectives (see next three slides):

- **Cell Transfer Delay (CTD):** mean CTD < 400 ms
- **Cell Delay Variation (CDV):** difference between upper and lower 10^{-8} quantiles of CTD < 3 ms
- **Cell Loss Ratio (CLR):** < 3×10^{-7}

(the following also for QOS *Class 2* and *Class 3*)

- **Cell Error Ratio (CER):** < 4×10^{-6} (< 4×10^{-7} proposed)
- **Cell Misinsertion Rate (CMR):** < 1 / day
- **Severely Errored Cell Block Ratio (SECBR):** < 10^{-4}
QoS classes (ITU-T)

Whereas the ATM Forum utilizes individual QoS parameters, the corresponding ITU-T network performance parameters are associated with four QoS classes (see ITU-T I.356):

<table>
<thead>
<tr>
<th>ATM transfer capabilities</th>
<th>Applicable QoS class</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBR, SBR1, ABT/DT, ABT/IT</td>
<td>Class 1 (stringent class)</td>
</tr>
<tr>
<td>DBR, SBR1, ABT/DT, ABT/IT</td>
<td>Class 2 (tolerant class)</td>
</tr>
<tr>
<td>SBR2, SBR3, ABR</td>
<td>Class 3 (bi-level class)</td>
</tr>
<tr>
<td>Any transfer capability</td>
<td>U class (no QoS parameters)</td>
</tr>
</tbody>
</table>

QoS class should not be confused with Service class (A...D).
NPO:s of QoS classes (ITU-T)

ITU-T I.356 p.24

<table>
<thead>
<tr>
<th>Netw. perf. parameter</th>
<th>QOS Class 1</th>
<th>QOS Class 2</th>
<th>QOS Class 3</th>
<th>QOS U Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTD</td>
<td>400 ms</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>CDV</td>
<td>3 ms</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>CLR</td>
<td>3 E-7</td>
<td>E-5</td>
<td>E-5</td>
<td>U</td>
</tr>
<tr>
<td>CER</td>
<td>4 E-6</td>
<td>4 E-6</td>
<td>4 E-6</td>
<td>U</td>
</tr>
<tr>
<td>CMR</td>
<td>1 / day</td>
<td>1 / day</td>
<td>1 / day</td>
<td>U</td>
</tr>
<tr>
<td>SECBR</td>
<td>E-4</td>
<td>E-4</td>
<td>E-4</td>
<td>U</td>
</tr>
</tbody>
</table>

U - unspecified
RT-VBR: Specified by the ATM Forum for services with stringent time requirements ("real-time applications"), like CBR / DBR above, but with variable bit rate.

NRT-VBR: Specified by the ATM Forum for variable bit rate services without stringent time requirements ("non-real-time applications").

In both VBR service categories, we need to specify the following traffic parameters:

- Peak Cell Rate (PCR)
- Sustainable Cell Rate (SCR)
- Maximum Burst Size (MBS)

ITU-T utilizes the traffic parameter IBT instead of MBS.

SBR: The ITU-T version of NRT-VBR. Consequently, this *Transfer Capability* is used for variable bit rate services with no stringent time requirements. Available as SBR1…SBR3.

Again, we need to specify the following traffic parameters:

- Peak Cell Rate (PCR)
- Sustainable Cell Rate (SCR)
- Intrinsic Burst Tolerance (IBT), a function of PCR, SCR and MBS (ITU-T I.371, p.20)

SCR is an upper bound on the *average cell rate* of an ATM connection, defined over a ”long” time interval.

MBS is the maximum number of consecutive cells allowed at the peak cell rate.
ABR. A relatively new concept. Based on *flow control* from the network (employing *Resource Management = RM cells*).

In ABR, we need to specify the following traffic parameters:

- Peak Cell Rate (PCR)
- Minimum Cell Rate (MCR)

MCR is a bound (0 < MCR < PCR) on the cell rate that the network supports under all conditions. The cell rate of the source may be 0 … MCR at worst, 0 … PCR at best.

Typical applications:

- LAN emulation / LAN interconnection
- File transfer (critical applications)
Available Bit Rate (ABR)

- Peak cell rate (PCR)
 (may not be exceeded by source)

- Minimum cell rate (MCR)
 (always guaranteed by network)

- Zero cell rate

Service costs more

Service costs less
UBR: No QoS requirements. The only traffic parameter of interest is the PCR.

UBR supports a high degree of statistical multiplexing.

Typical applications:

- File transfer (non-critical applications)
- E-mail

ABT: An *ATM block* is defined as a group of cells located between two RM cells.

ABT with delayed transmission (ABT/DT): the Block Cell Rate (BCR) of each ATM block is negotiated separately.

ABT with immediate transmission (ABT/IT): no feedback from the network \Leftrightarrow cells can be discarded.
Service Category attributes (ATM Forum)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ATM Layer Service Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CBR</td>
</tr>
<tr>
<td>Traffic Parameters</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td></td>
</tr>
<tr>
<td>SCR, MBS</td>
<td>n/a</td>
</tr>
<tr>
<td>MCR</td>
<td></td>
</tr>
<tr>
<td>QoS Parameters</td>
<td></td>
</tr>
<tr>
<td>Max CTD</td>
<td>specified</td>
</tr>
<tr>
<td>Max pp CDV</td>
<td>specified</td>
</tr>
<tr>
<td>CLR</td>
<td>specified</td>
</tr>
<tr>
<td>Other attributes</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td></td>
</tr>
</tbody>
</table>
No simple one-to-one mapping always possible between:

Service classes A … D (upper layers)

AAL 1, AAL 2, AAL 3/4, AAL 5 (AAL)

4 Transfer capabilities / 5 Service categories (ATM layer)

4 QoS classes / QoS parameters (network)
Traffic management in ATM

The role of traffic management is to protect the network and terminals from congestion in order to achieve certain network performance objectives (NPO:s).

An additional role is to promote the efficient use of network resources (efficient bandwidth resource allocation).

Recs/Specs: ITU-T: I.371 ATM Forum: TM 4.0

Terminology: 4 transfer capabilities / 5 service categories traffic parameters (PCR, SCR, MCR, MBS) network performance parameters ⇔ 4 QoS classes / individual QoS parameters
Traffic management (cont.)

1. *Negotiation of traffic contract before transmission*

 Traffic contract involves traffic descriptors and network performance / QoS parameters or QoS classes

2. *Traffic control mechanisms (enforcement of contract)*

 Connection Admission Control (CAC): the network decides if a connection request can be accepted

 Usage Parameter Control (UPC): the network detects violations of negotiated parameters and takes appropriate action (e.g., cell discarding or cell tagging)

 Feedback control (e.g., flow control of ABR service)