Public Switched Telephone Network (PSTN)
Topics in PSTN

- Medium sharing
 - FDMA/TDMA/CDMA/CSMA
 - Circuit/packet switching - connection-oriented and connectionless switching -
- Digital hierarchies
- Exchanges
 - technologies: development, modern local exchange
 - interfaces: ISDN and line interface circuit (LIC)
 - signaling
 - services
 - operation and maintenance (O&M)
- Terminals in access network: phones, modems, faxes
Medium sharing (multiplexing, channelization)

- Multiplexing involves the sharing of a transmission channel (resource) by several connections or information flows
 - Channel = 1 wire, 1 optical fiber, or 1 frequency band
- Significant economies of scale can be achieved by combining many signals into one
 - Fewer wires/pole; fiber replaces thousands of cables
- Implicit or explicit information is required to demultiplex the information flows.

Ref: A. Leon-Garcia: Communication Networks 2th ed slide set
Medium sharing techniques

- Static channelization
- Dynamic medium access control

Scheduling
- Polling: take turns
- Request for slot in transmission schedule
- Token ring
- Wireless LANs

Random access
- Loose coordination
- Send, wait, retry if necessary
- Aloha
- Ethernet

Ref: A. Leon-Garcia: Communication Networks 2th ed slide set
Basic channelization techniques

- **FDMA:**
 - Oldest, first in PSTN
 - Used in GSM uplink/downlink channel separation
 - ADSL uplink/downlink & in OFDM

- **TDMA:**
 - ISDN-exchanges, GSM calls
 - Other applications: DECT

- **CDMA:**
 - Supports statistical multiplexing
 - Suits well to wireless cellular channel (channel adaptation)
Dynamic medium access (CSMA / CDMA)

- Transfer of information as payload in data packets
- Packets undergo random delays & possible loss
- Different applications impose differing requirements on the transfer of information
- Typical Medium Access Control (MAC) schemes: Aloha and CSMA

Ref: A. Leon-Garcia: Communication Networks 2th ed slide set
Digital hierarchies

- In digital multiplexing several messages are transmitted via the same physical channel. For multiplexing 64 kbit/s channels in digital exchanges following three methods are available:
 - **PDH** (plesiochronous digital hierarchy) (the dominant method today, E1 & T1) ('50-'60, G.702)
 - **SONET** (synchronous optical network) ('85)
 - **SDH** (synchronous digital hierarchy) (CCITT '88)

![Diagram of European PCM frame]

- **European PCM frame**
 - 125 μs
 - 32 time slots × 8 bits × 8000 Hz = 2048 kbit/s
- **PDH E-1 frame**
 - frame synchronization slot
 - signaling or traffic
 - traffic
European PDH digital hierarchy

- CCITT digital hierarchy based on 30 PCM channels

- E1, 2.048 Mbps channel
- E2, 8.448 Mbps channel
- E3, 34.368 Mbps channel
- E4, 139.264 Mbps channel
Switching in public networks

Cell switching
- works with cells (packets) having a fixed size: offers bounded delay guarantees (QoS compatible, long packets won’t stuck cells)

CSPDN: Circuit switched public data net*
PSPDN: Packet switched public data net**
DQDB: Distributed queue dual bus

* Used by European Telecom’s that use X.21 in circuit switched nets
**Used by British Telecom’s Packet-switched Service (PSS), Data Pac (Canada) ...
Circuit switching - TDM

Time switch
- Makes switching between time slots
- In the figure incoming slot 3 is switched to outgoing slot 3 for one voice direction
- Each coming timeslot stored in Speech Store (SS)
- Control store (CS) determines the order the slot are read from SS
- The info in CS is determined during setup phase of the call

Space switch
- Makes switching between PCM lines
- *works with* electronic gates controlled by CS

Circuit switching
- dedicated path
- constant delay/bandwidth
- voice/data
- paid by time
- examples: PSTN, GSM?
Circuit switching - summary

- End-to-end dedicated circuits between clients
 - Client can be a person or equipment (router or switch)
- Circuit can take different forms
 - Dedicated path for the transfer of electrical current
 - Dedicated time slots for transfer of voice samples
 - Dedicated frames for transfer of super frames
 - Dedicated wavelengths for transfer of optical signals
- Circuit switching networks require:
 - Multiplexing & switching of circuits
 - Signaling & control for establishing circuits
Packet switching

Packet structure
- Seq: sequence number
- Op code: message/control identifier
- CRC: Cyclic Redundancy Code

Node structure

Note:
- source address required for retransmission in ARQ
- byte count could be also an end flag
Example: IP packets in Internet

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>24</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>IHL</td>
<td>Type of service</td>
<td>Identification</td>
<td>Flags</td>
<td>Fragment offset</td>
<td></td>
</tr>
<tr>
<td>Time to live</td>
<td>Protocol</td>
<td>Header checksum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Source IP address**
- **Destination IP address**
- **Options**
- **Padding**

- **IPv4 packet header (to be further discussed in Internet lecture)**
Example of cell switching:

Distributed queue dual buss (DQDB, 802.6)

Function
- **transport units** have a constant length
- **access units** access known subscribers in access unit’s subnets and route packets for them
- **access protocol** applies **token ring**

Properties
- decentralized (distributed switching as in FDDI*)
- for ATM compatible MANs (metropolitan area networks)
- rates: up to 155 Mbps
- geographical limit up to 200 km

* FDDI: Fiber Distributed Data Interface
 for description, see the supplementary material of this lecture

Transport Unit (same as in ATM)

AAL 1: For constant-bit-rate (CBR) services and circuit emulation.
AAL 2: For variable-bit-rate (VBR) services.
AAL 5: For data (for example, IP datagrams)

HUT Comms. Lab, Timo O. Korhonen
Packet switching - summary

- General characteristics
 - can use packets of **varying length**
 - packet is assigned an **address** and the necessary **control** information
 - packets are placed in **frames**
 - Each sent frame stored in a buffer (**store & forward**) in a receiving node and its information is checked before re-sending -> **delays** but **errorless transmission** possible
- In summary: packet handing by nodes consists of
 - checking the **packet format**
 - checking for **errors** (link level - OSI 2)
 - **waiting** for available outgoing path capacity
- Nodes have routing tables (network level - OSI 3)
Connection-oriented and connectionless switching

Connection oriented
- Applies same route
- QoS well defined
- Phases
 - Connection setup
 - Data transmission
 - Release
- Packets received in same order
- Example: ATM, frame relay, PCM

Connectionless
- Use of different routes for each packet possible
- Each packet has address fields
- QoS not guaranteed
- Packets may come in different order
- Example: IP (Internet Protocol), TCP takes care of cleaning the mess
Transfer modes & connections summarized

<table>
<thead>
<tr>
<th>Transfer modes</th>
<th>Connection types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit switching</td>
<td>Connection oriented</td>
</tr>
<tr>
<td>- developed for voice</td>
<td>- hand-shaking</td>
</tr>
<tr>
<td>- nowadays also for data</td>
<td>- strict error requirements</td>
</tr>
<tr>
<td>- well-specified delays</td>
<td>- for fast data transfer</td>
</tr>
<tr>
<td>- echo problems</td>
<td></td>
</tr>
<tr>
<td>Packet switching</td>
<td>Connectionless</td>
</tr>
<tr>
<td>- developed for data</td>
<td>- especially for broadcasting/streaming</td>
</tr>
<tr>
<td>- nowadays also for voice</td>
<td>- modest error rates</td>
</tr>
<tr>
<td>- statistical multiplexing</td>
<td>often accepted</td>
</tr>
<tr>
<td>- traditionally variable delays</td>
<td>- for fast data in good channels</td>
</tr>
</tbody>
</table>

Connection types

- PSTN
- ISDN
- PCM
- ATM
- Frame-relay
- X.25
- IP, Frame-relay
- ATM
- X.25, IP, UDP*

*User Datagram Protocol
Early exchanges

- 1876 A. G. Bell telephone patent
- 1878 The first exchange constructed in La Porte, the US
 - could connect any two of the 21 subscribers
 - manual switching
- 1891 first automatic exchange: Strowger Switch by Almon B. Strowger: an undertaker in Kansas City
- A 100 line Strowger switch:
 - each user has its own selector
 - no concentrators
 - expensive

See further info also at: http://www.seg.co.uk/telecomm/

Topology of the first network using Strowger switch

HUT Comms. Lab, Timo O. Korhonen
An early analog PBX: 100 subscriber exchange
(Step-by-step: Subscriber controlled call set-up)

Call setup:
1. A-sub. picks up handset (CF detects)
 - exchange sends line available -tone
2. A-sub. sends pulses (GS, LS activated)
 - exchange sends ringing tone

MAIN PARTS:
- Call finders (CF)
- Group selectors (GS)
- Line selectors (LS)
Modern local exchange

- Operation & maintenance support (Q.513)
- Charging
- Supplementary (IN) services (as credit card call)
- Subscriber data, switch control

ETC: Exchange terminal circuit
IN: Intelligent network

PBX
Subscriber stage
Group switch
Third-party equipment
Test/measurement equipment
Announcement equipment
Signalng equipment
ETC

Signalng (SS7) with users and other exchanges
to other exchanges
Recorded announcements: faults/subscriber services

Traffic concentration
Conference calls, call waiting, broadcasting ...

O&M HW
Switch
Control

IN: Intelligent network
To ETC

ETC: Exchange terminal circuit
Speech store: shift registers storing bits for time switching
Control store: gates guiding speech store switches
* leased PBX function from local exchange

Connects to: digit receivers, info tones, test equipment

Control system: subscriber authentication, routing, billing, O & M, ...
Exchange control functions

- **Maintenance** functions
 - supervision of subscriber lines and trunk circuits

- **Operational** functions
 - *administrative* data as
 - subscriber database
 - routing database
 - *statistical* data as
 - from where and whom subscribers call
 - holding times for different equipment types
 - utilization of IN services

- **User services**

Sample of Intelligent network (IN) services

<table>
<thead>
<tr>
<th>Pre-Paid</th>
<th>Calling Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Phone/Toll-free (NDB 800)</td>
<td>Single Number Service</td>
</tr>
<tr>
<td>Virtual Private Network</td>
<td>Number Portability</td>
</tr>
<tr>
<td>Personal Number</td>
<td>IN based call centers</td>
</tr>
<tr>
<td>Premium Rate</td>
<td>Call Screening Capabilities</td>
</tr>
</tbody>
</table>
Exchange user services (examples)

- **Absent-subscriber** services as the answering machine
- **Call booking**: connection at the desired time
- **Person-to-person call**: ensures that call goes to a right person
- **Serial call**: setting up several calls
- **Telephone conferencing**: several persons participate to call in real-time (compare: tele-conferencing)
- **Directory inquiries**: also speech recognition, recorded messages

(many of these nowadays available in terminals)
The space-switch (used as a cross-switch and concentrator)

- Number of cross-connections reduced compared if a simple space division matrix of N\times M (input x output) would be used
- Usually performs concentration: Blocking possible
- Same signal can be routed via different paths: increased reliability
- Application: connects physically separate PCM-lines
The time-switch

- One of the time slots of any **full-duplex** lines is connected to some other line (at a time)
- Thus two switches / time slot connect a line
- For 100 full-duplex lines at 19.6 kbps a 1.92 Mbps bus is thus required for no blocking
- If no fixed assignment of input lines to time slot but on demand allocation -> blocking switch that reduces number of switches and switch clock frequency. For instance 200 lines of 19.6 kbps with bus of 1.92 Mbps -> about half of the devices can connect at any time, eg concentration is 2:1
The time-space-time (TST) switch

- Works in local exchange and subscriber stage
- Performs PCM concentration, usually 10:1 ... 3:1
- Connects subscribers also to information tones and test equipment
- Time switch contains one bus for incoming and outgoing calls (full-duplex)

Question: Why time or space switch is not always enough?
PSTN ISDN exchange interfaces Q.512

CN: Concentrator
ET: Exchange T.
LT: Line T.
AN: Access Net.
NT: Network T. (in ISDN)
T: Terminal

Peek to Q-recommendations

- **Q.511** Exchange interfaces towards other exchanges
- **Q.512** Digital exchange interfaces for subscriber access
- **Q.513** Digital exchange interfaces for operations, administration and maintenance
- **Q.521** Digital exchange functions
- **Q.522** Digital exchange connections, signalling and ancillary functions
- **Q.541** Digital exchange design objectives - General
- **Q.542** Digital exchange design objectives - Operations and maintenance
- **Q.543** Digital exchange performance design objectives
- **Q.544** Digital exchange measurements

HUT Comms. Lab, Timo O. Korhonen
Exchange interfaces and tasks, V1

- Purpose of exchange is to organizes connection between exchange terminators!
- V1: Access to basic ISDN (This is user’s ISDN-u interface that can be used to connect small PBX also)
- Basic ISDN V1-functions:
 - 2 B + D (2x64 kbps + 16 kbps) channeling structure
 - timing and frame synchronization
 - activate and deactivate terminator
 - operation and maintenance
 - feeding power supply
 - ISDN basic access parameters defined in G.961
Exchange interfaces and tasks, V2-V4

- **V2**: Interface serves typically concentrators
 - 2048 kbit/s eg
 - 30 B + D
 - Electrical standard G.704 (frames, signaling...)
- **V3**: Resembles V2 but intended for interface other exchanges (PABX)
 - Electrical standard G.703
 - 30 B + D at 2048 kb/s (SDH E-1, Europe)
 - also 23 B +D at 1544 kb/s (I.431) (SDH T-1, US)
- **V4**: Interface to private networks (as such not ITU-T specified), for instance DSLAM (ADSL-interface specified by ADSL-forum - ANSI T1.413, ITU-T: G.992)
Exchange interfaces and tasks, V5

- Between access network and exchange
- 2048 kbit/s basic rate
- Specifies basic interfaces for
 - Analog access
 - ISDN-access
- Electrical interface G.703
- Channel control and signaling
- V5 supports interface rates 2048 kbit/s ... 8448 kbit/s
Connecting the local loop: Line interface circuit (LIC)

Used for signaling in certain coin-operated pay-phones and PBX
Line interface circuit components

- Over-voltage protection
- Test equipment to connect to monitor the line condition faults
- Voltage feed
 - ringing
 - telephone current supply
- Detection of
 - hook stage, pulse generated, or dual-tone receiver
- The hybrid junction (2 wire - 4 wire interface)
- An A/D converter (uses PCM techniques at 64 kbps)
The hybrid-circuit

4-wire connection is used between exchanges and 2-wire connections from exchange to subscribers
The hybrid-circuit

If the impedance Z_b equals the line impedance no incoming voice (down right) leaks to outgoing voice (up right) but the signal goes via the two wire connection on the left.
The hybrid-circuit summarized

- The hybrid circuit **transforms** two-wire connection into 4-wire connection.
- If the hybrid is unbalanced **echo** will result
 - Hybrid is **balanced** when no own voice is leaked into own loudspeaker
- Hybrid unbalance can result from **line impedance** changes due to weather conditions
- Unbalance results **echo**
- Echo **cancellation** circuits are harmful in data connections
- Nowadays realized by **operational amplifier** based circuitry that automatically monitors line impedance changes
Network echo suppressor (NES)

- R: transmission gate, A: attenuator, L: logic circuit
- When the signal is present on the receiving line the transmitting line is **cut-off**

- A kind of semi-duplex approach to solve the echo problem
Network echo canceller (NEC)

- Signal echo is extracted and **subtracted** from the received signal.
- More effective than echo suppressor. Often NEC and NES are however both used.

![Diagram of a network echo canceller](image)
Signaling

- Telecom nets require more and more processor capacity:
 - More subscribers
 - Setting up connection is getting increasingly complex
 - Number of supplementary services increasing
 - Signaling in PSTN divided to user signaling in local loop and to inter-exchange signaling
PSTN signaling

- Channel associated signaling (CAS) as No.5, R1, R2
 - analog and digital connections
- Modern ISDN exchanges apply SS7(digital), that is a common channel signaling method (CSS) that is discussed later in its own lecture
- **CAS** is divided into **line and register signaling**:
 - **Line** signaling:
 - **line state** between the trunk-links as
 - answer, clear-forward*, clear-back
 - **Register** signaling:
 - **routing** information as
 - B-number, A-category, B-status

A-subscriber’s on-hook message transmitted to B exchange
Signaling phases

- Three categories of information is transmitted:
 - **setup**, supervision clearing
 - **service** related information as
 - forwarding, callback, charging
 - **status** change information
 - transmission network congestion
 - neighborhood exchange congestion
Modern PSTN hierarchy

- Access transport level
- Local exchange
- Local transport level
- Regional transport level
- Transit exchange
- to international level
PSTN Hierarchy cont.

- **Local** (example, within a city)
 - Subscriber connections
 - Switching within the local exchange
 - Switching to other exchanges
- **Transit** (county level, say between Tampere and Helsinki)
 - Switching traffic between different geographical areas within one country
- **International**
 - Gateway-type traffic between
 - different countries
 - DWDM (Dense Wavelength Division Multiplexing) routes
 - Rates can follow SONET or SDH standard

SDH
- transport of 1.5/2/6/34/45/140 Mbps within a transmission rate of 155.52 Mbps
- carries for instance ATM and IP within rates that are integer multiples of 155.52 Mbps
Digital Circuit Multiplexing Equipment DCME (G.763)

- **DCME Functions**
 - Digital speech interpolation (**DSI**) 2.5:1 + **ADPCM** of 32 kb/s
 - Overload handling: Extra system capacity can be allowed to variable bit rate (**VBR**) channels (capacity taken from unused compressed speech channels)
 - Option to **make conversions**
 - between T1 (1.5 Mb/s, US) and E1 (European 2 Mb/s) connections
 - between μ- and A-law compressions

A: Digital line interface
B: Time-slot switching
C: Voice interpolation (**DSI**)
D: ADPCM
E: Variable bit rate (for overload)
PSTN operation and maintenance (Q.513)

- Different alarm classes
- Vital functions and circuits (as SS7 and group switch) use secured paths and backups
 Procedures provided for:
 - troubleshooting
 - fault diagnostics
 - hardware faults can be isolated
- Supervision is realized also by connecting maintenance units to the network
- Important switches have extensive backup equipment

A supervision plan by network levels:

International trunk circuits
- Signal level
- Signal-to-noise ratio
- Bit error ratio
- Echo

National trunk circuits
- Extremely few or extremely many calls
- Synchronisation problems
- Line breakdown
- Number of faults per hour

Subscriber line
- Unintentional off-hook state
- Extremely long or extremely short calls
- Line breakdown
- Impedance balancing
PSTN user services

- **Basic** service
 - bearer service (*local loop access*): analog (N-ISDN)
- **Value-added** services (*telephonist-originated*) services as
 - directory inquiry (118)
 - weather, stock exchange, ticket reservation ...
- **Supplementary** services (*Intelligent Terminal (IN) implementation*)
 - distributed supplementary as ‘call forwarding unconditional’ (Q.82.2), ‘call waiting’, ‘queuing’ ...
 - centralized supplementary services (IN) use specialized routing & charging as VPN, credit card calls, free phone (receiver pays), universal access number (connected automatically to the nearest office), ...
Growth of telecommunication services

Ref: J.E. Flood: Telecommunication Switching and Networks
Connecting into PSTN exchange: Equipment in the access network

- On-line subscriber with several telephones
- Twisted pair - connections
- ISDN connection example: 30B+D (2.048 Mb/s)
- Private Branch Exchange (PBX)
- Multiplexer
- Business subscriber
- Wireless access (or radio access point)
- ISDN 2B+D 144 kb/s
- ADSL modem
- Cross connection point
- Q.512 specifies exchange interfaces

HUT Comms. Lab, Timo O. Korhonen
Analog local loop interface

- long setup time
- hacking easy
- voice grade circuits
- interference & cross-talk sensitive
- expensive

per trunk signaling in local loop:

Digital-lines to ISDN central office

Loop current used for signaling & message

20 mA
0 mA

Number "8" dialed, eight off current pulses

Handset goes "off hook"
Each pulse moves the "step by step" rotary switch forward one position.

Handset goes "on hook" or hangup.

Twisted pair

A/D CODEC
D/A CODEC
Hybrid

Digital signals
Analog signals

Microphone
Earphone

Hybrid
Special purpose transformer

Analog-line
Basic telephone terminal

- A basic phone can be made by using just four units
 - The bell
 - The hook switch
 - The keypad
 - The speech circuit
- Modern keypads use dual-tone dialing
- The speech circuit adapts voice levels and isolates mic and speaker
Dual-tone dialing

- Dual-tone dialing is used in subscriber loop to transmit the selected B-subscriber number
- Earlier pulse selection was applied (very rare nowadays)
Modems

- Diagnostic unit
 - Checks faults and controls the modem
- Interface and line units
 - Adapt the modem and terminal
- Modem performs A/D and D/A conversion and selects rate such that transmission quality criteria (error rate) can be meet
Modem recommendations

- ITU-T specifies several modem standards as
 - V.26 (11/88) - 2400 bits per second modem for use on 4-wire leased lines
 - V.27 (11/88) - 4800 bits per second modem for use on leased lines
 - V.29 (11/88) - 9600 bits per second modem for use on point-to-point 4-wire leased lines
 - V.90 (09/98) - 56 000 bit/s downstream and up to 33 600 bit/s upstream modem for use in the general switched telephone
 - V.36, V.37 - 48 kbit/s & up at 60-108 kHz
Modem recommendation specifications

- Data signaling rates, symbol rates, carrier frequencies
 pre-emphasis, scrambler, framing
- Encoder (for instance TCM (Trellis coding) in V.90)
- Interface circuits (terminal-modem interface: V.24)
- Rate adaptation (real-time, at steps of 2.4 kb/s)
- Data compression (V.42bis, MNP 5)
- Error correction (V.42, MNP 10)
- PCM quantization curve ;μ (US) or A-law (Europe)
- Start-up signals and sequences
- Operating procedures
- Testing conditions
Analog and digital interfaces of modems

G.711 (11/88) - Pulse code modulation (PCM) of voice frequencies

V.34 (02/98) - A modem operating (up to 33 600 bit/s) for use in 2-wire analog PSTN

Digital modems: Generate G.711 signals and receive V.34 signals passed through G.711 encoder. Connected to a digital switched network through a digital interface

Analog modems: Generate V.34 signals and receive G.711 signals that have been passed through G.711 decoder in an analog PSTN local loop

HUT Comms. Lab, Timo O. Korhonen
Fax communications over PSTN

- Faxes follow standard PSTN modem communications recommendations or IEEE recommendations, as V.17 (02/91) (- Wire modem for facsimile applications with rates up to 14 400 bit/s)
- Faxes are divided into groups:
 - Group 1 (´68): Analog scanning, 2400 bits/s
 - Group 2 (´76): Analog scanning, 4800 bits/s
 - Group 3 (´80): Digital scanning, 14400 bits/s
 - Group 4 (´84): Digital scanning, 64 kbit/s (ISDN)
- Example of modules in group 3 transmitting fax:

A4/US letter, 1144 lines
Gray scales by dithering
Modified Huffman
QAM, V.27ter/V.29

Scanning, Coding, Compression, Modem (D/A)
PSTN in ITU-T standards (www.itu.org)

- **Series D** Recommendations - General *tariff* principles
- **Series E** Recommendations - Overall network *operation*, telephone service, service operation and human factors
- **Series G** Recommendations - *Transmission* systems and media, digital systems and networks
- **Series I** Recommendations - Integrated services digital network (ISDN)
- **Series M** Recommendations - Network *maintenance*: international transmission systems, telephone circuits, telegraphy, facsimile, and leased circuits
More PSTN standards (www.itu.org)

- **Series O Recommendations** - Specifications of [measuring equipment](#)
- **Series P Recommendations** - Telephone [transmission quality](#), telephone installations, local line networks
- **Series Q Recommendations** - [Switching](#) and [signaling](#) (Signaling Systems no:4,5,6, and 7, Register Signaling no: R1, R2, IN - Service)
- **Series V Recommendations** - [Data communication](#) over the telephone lines
Example: Q-recommendations: Switching and signalling*

(Illustrative examples denoted by arrows)

International Telecommunication Union
Our Sites News Events Publications Site Map About Us

Switching and signalling

Q.1 Signal receivers for manual working
Q.2 Signal receivers for automatic and semi-automatic working, used for manual working
Q.4 Automatic switching functions for use in national networks
Q.5 Advantages of semi-automatic service in the international telephone service
Q.6 Advantages of international automatic working
Q.7 Signalling systems to be used for international automatic and semi-automatic telephone working
Q.8 Signalling systems to be used for international manual and automatic working on analogue leased circuits
Q.9 Vocabulary of switching and signalling terms
Q.10 Definitions relating to national and international numbering plans
Q.11b Numbering plan for the ISDN era
Q.11t Timetable for coordinated implementation of the full capability of the numbering plan for the ISDN era
(Recommendation E.164)
Q.12 Overflow - alternative routing - rerouting - automatic repeat attempt
Q.13 International telephone routing plan
Q.14 Means to control the number of satellite links in an international telephone connection
Q.15 Nominal mean power during the busy hour
Q.16 Maximum permissible value for the absolute power level of a signalling pulse
Q.20 Comparative advantages of "in-band" and "out-band" systems
Q.21 Systems recommended for out-band signalling
Q.22 Frequencies to be used for in-band signalling
Q.23 Technical features of push-button telephone sets
Q.24 Multifrequency push-button signal reception

*http://www.itu.int/rec/recommendation.asp?type=products&lang=e&parent=T-REC-Q
Switching and signalling (cont.)

Q.52 Signaling between international switching centers and stand-alone echo control devices
Q.55 Signalling between signal processing network equipment (SPNE) and international switching centres (ISC)
Q.56 Signalling between signal processing network equipment (SPNE) and international switching centres (ISC) over an IP network
Q.65 The unified functional methodology for the characterization of services and network capabilities
Q.68 Overview of methodology for developing management services
Q.71 ISDN circuit mode switched bearer services
Q.72 Stage 2 description for packet mode services
Q.76 Service procedures for Universal Personal Telecommunication - Functional modelling and information flows
Q.80 Introduction to stage 2 service descriptions for supplementary services
Q.81.1 Direct dialling-in
Q.81.2 Multiple subscriber number
Q.81.3 Calling line identification presentation (CLIP) and calling line identification restriction (CLIR)
Q.81.5 Connected line identification, presentation and restriction (COLP) and (COLR)
Q.81.7 Malicious call identification (MCID)
Q.81.8 Sub-addressing (SUB)
Q.82.1 Call transfer
Q.82.2 Call forwarding
Q.82.3 Call deflection
Q.82.4 Line hunting
Q.82.7 Explicit call transfer
Q.83.1 Call waiting (CW)
Q.83.2 Call hold
Q.83.3 Stage 2 description for call completion supplementary services: Completion of call to busy subscriber
Q.83.4 Terminal portability
Q.84.1 Conference calling (CONF)