ISDN

Integrated Services Digital Network

- definition of ISDN
- evolution to ISDN and beyond
- ISDN services
- basic BRA / PRA architecture
- protocols & signalling
What is ISDN?

1. End-to-end digital connectivity
2. Enhanced subscriber signaling
3. A wide variety of new services (due to 1 and 2)
4. Standardized access interfaces and terminals

ISDN is not a “new” network separated from the PSTN. Interworking with “normal” PSTN equipment is very important.

Idea originated in the 1980’s

\[\text{interaction is possible}\]
Evolution towards ISDN and beyond

How does ISDN fit into the telecom network evolution in general?

1. First the network was all-analogue and voice-centric
2. Digital transmission (PDH) in the core network
3. Digital switching at 64 kbit/s
4. SS7 replaces channel associated signalling systems
5. SDH replaces PDH
6. ISDN offers digital technology to end users
7. DSL (primarily ADSL) technology takes over
Step 1: All-analogue network (before 1960)
Step 2: Digital transmission in the core network (1960 - 1980)

PDH transmission systems (2 - 140 Mbit/s)
Step 3: Digital switching at 64 kbit/s (1970 - 1990)

Evolution history
Evolution history

Step 4: Common Channel Signalling in the core network (1980 - 2000)
Step 5: PDH systems are replaced by SDH systems (1990 ...)

SDH transmission systems (155, 620 Mb/s)
Step 6: ISDN => digital technology to end users

Evolution history
Evolution history

Step 7: ADSL (for Internet services) + analogue voice

- High speed Internet access
- (Back to) traditional voice services
- Mobile systems
PSTN vs. ISDN user access

<table>
<thead>
<tr>
<th>PSTN</th>
<th>Basic Rate Access ISDN</th>
<th>Primary Rate Access ISDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 ... 3400 Hz analogue transmission band</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“poor-performance” subscriber signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 64 kbit/s digital channels (B channels)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 kbit/s channel for signaling (D channel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 x 64 kbit/s digital channels (B channels)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 kbit/s channel for signaling (D channel)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Digital access: several alternatives

<table>
<thead>
<tr>
<th></th>
<th>ISDN BRA</th>
<th>modem</th>
<th>ADSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit rate (kb/s)</td>
<td>2 x 64</td>
<td>max. 50</td>
<td>much larger</td>
</tr>
<tr>
<td>Connection setup time</td>
<td>fast</td>
<td>slow</td>
<td>fast</td>
</tr>
<tr>
<td>Popularity</td>
<td>little</td>
<td>decreasing</td>
<td>great</td>
</tr>
</tbody>
</table>

However, large impact on signalling protocols
Telecommunication services

Basic telecommunication services

Bearer services provide the capability of transmitting signals between network access points. Higher-level functionality of user terminals is not specified.

Teleservices provide the full communication capability by means of network functions, terminals, dedicated network elements, etc.

Supplementary services

A supplementary service modifies or supplements a basic telecommunication service. It cannot be offered to a customer as a stand-alone service.
Services examples

Some typical teleservices
♦ Telephony (normal, high quality)
♦ Telefax (Group 3, Group 4)
♦ Video-telephony

Some typical bearer services
♦ Speech (transparency not guaranteed)
♦ 64 kbit/s unrestricted
♦ 3.1 kHz audio (non-ISDN interworking)

Some typical supplementary services
♦ CLIP / CLIR
♦ Call forwarding / waiting / hold
♦ Charging supplementary services
Basic rate access – user interface

Subscriber (premises) network
Primary rate access – user interface

Private Branch eXchange (PBX)

Line Termination

PBX equipment manufacturer specific solutions

Standard 2 Mb/s TDM connection (PDH or SDH)

64 kb/s D channel in one TDM time slot
Signalling protocols for end-to-end circuit-switched digital connection

<table>
<thead>
<tr>
<th>User interface</th>
<th>PSTN Network</th>
<th>User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.931</td>
<td>Q.931</td>
<td>Q.931</td>
</tr>
<tr>
<td>DSS1</td>
<td>ISUP</td>
<td>DSS1</td>
</tr>
<tr>
<td>Q.921</td>
<td>MTP 3</td>
<td>Q.921</td>
</tr>
<tr>
<td>I.430</td>
<td>MTP 2</td>
<td>MTP 1</td>
</tr>
<tr>
<td></td>
<td>ISUP</td>
<td>Q.921</td>
</tr>
<tr>
<td></td>
<td>MTP 3</td>
<td>MTP 1</td>
</tr>
<tr>
<td></td>
<td>MTP 2</td>
<td>I.430</td>
</tr>
<tr>
<td></td>
<td>Q.921</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I.430</td>
<td></td>
</tr>
</tbody>
</table>

Contains the signalling messages for call control
Layered DSS1 signaling structure

DSS1 = Digital Subscriber Signalling system no.1

Layer 1: **I.430**
Bit sequence structure, framing & multiplexing

Layer 2: **Q.921**
Link control (HDLC-type protocol called LAPD)

Layer 3: **Q.931**
Signaling messages (application layer)
Q.931 Call-related messages

Call establishment messages:
- ALERTING
- CALL PROCEEDING
- CONNECT
- CONNECT ACKNOWLEDGE
- PROGRESS
- SETUP
- SETUP ACKNOWLEDGE

Call clearing messages:
- DISCONNECT
- RELEASE
- RELEASE COMPLETE

Similar functions as ISUP in SS7
Typical content of ISDN Set-up message

Called party (user B) number & numbering plan

Calling party (user A) number (+ CLIP/CLIR)

Bearer capability (64 kbit/s unrestricted, speech, 3.1 kHz audio, packet mode B-channel, packet mode D-channel)

Channel identification (B1, B2, or D channel request)

Low-layer compatibility (type of bit rate adaptation, type of modem ...)

High-layer compatibility (teleservice-related issues)

Keypad facility
Example: Structure of Release message

Message type: RELEASE
Significance: Local
Direction: Both

<table>
<thead>
<tr>
<th>Info Element</th>
<th>Direction</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol discriminator</td>
<td>Both</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>Call reference</td>
<td>Both</td>
<td>M</td>
<td>2-</td>
</tr>
<tr>
<td>Message type</td>
<td>Both</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>Cause</td>
<td>Both</td>
<td>O</td>
<td>2-32</td>
</tr>
<tr>
<td>Display</td>
<td>n → u</td>
<td>O</td>
<td>2-3</td>
</tr>
<tr>
<td>Signal</td>
<td>n → u</td>
<td>O</td>
<td>2-3</td>
</tr>
</tbody>
</table>

Cause description may require many bytes

Common header part of message
Setup of an “old-fashioned” PSTN call

User A Exchange A Exchange B User B

- off-hook
- dial tone
- B number
- ringing tone
- connection ok

SS7 ISUP

“rrring”
user B answers
Setup of an ISDN call using Q.931

User A

Exchange A

Exchange B

User B

Setup

Alert

Connect

off-hook

Call proceed

B1 or B2?

Alert

Connect

connection ok

SS7 ISUP

Setup

Alert

“rrring”

user B answers
SS7

Common Channel Signalling System Nr. 7

- CCS vs. CAS
- SS7 protocol structure
- basic signalling examples
- MTP, ISUP and SCCP

Bhatnagar, Chapter 4
History of inter-exchange signalling

CAS
Before 1970, only channel-associated signalling (CAS) was used. In CAS systems, signalling always occurs **in-band** (i.e. over voice channels).

CCIS
SS6 = CCIS (common channel interoffice signaling) was widely deployed in North America, but not in Europe (=> concentrating on SS7 instead).

SS7
Starting from 1980 (mainly in Europe), CAS was being replaced by SS7. The use of stored program control (SPC) exchanges made this possible. Like CCIS, signalling messages are **transmitted over separate signalling channels**. Unlike CCIS, SS7 technology is based on **protocol stacks**.
Channel-associated signalling (CAS)

CAS means *in-band* signalling over voice channels.

CAS has two serious draw-backs:

1) Setting up a circuit switched connection is very slow.

2) Signalling to/from databases *is not feasible in practice* (setting up a circuit switched connection to the database and then releasing it would be extremely inconvenient).
Common channel signalling (CCS)

In practice, CCS = SS7
In Finnish: CCS = yhteiskanavamerkinanto (YKM)

signalling possible anywhere anytime

The packet-switched signalling network is separated from circuit switched connections. Consequently:

1) Signalling to/from databases is possible anytime.

2) End-to-end signalling is possible before call setup and also during the conversation phase of a call.
CAS vs. CCS example

1) Accessing database
2) End-to-end signalling before call setup
Signalling points (SP) in SS7

Every SP is identified by a unique signalling point code
Protocol layers (”levels”) of SS7

- **TUP**
- **ISUP**
- **MAP**
- **CAP**
- **INAP**
- **TCAP**
- **SCCP**

MTP levels:
- **MTP level 1** (64 kbit/s PCM time slot)
- **MTP level 2** (link-layer protocol)
- **MTP level 3**

Routing:

MTP - Message Transfer Part
SCCP - Signalling Connection Control Part
UP - User Part
AP - Application Part
Application protocols in SS7

TUP (Telephone User Part) – is being replaced by ISUP

ISUP (ISDN User Part) – for all signalling related to setting up, maintaining, and releasing circuit switched connections

MAP (Mobile User Part) – for transactions between exchanges (MSC, GMSC) and databases (HLR, EIR, AuC) in mobile networks

INAP (Intelligent Network Application Part) for IN applications in fixed networks

CAP (CAMEL Application Part) for extended IN functionality in mobile networks (where MAP is not sufficient …)
MTP functions

MTP level 1 (signalling data link level):
 Digital transmission channel (64 kbit/s TDM time slot)

MTP level 2 (signalling link level):
 HDLC-type frame-based protocol for flow control, error control (using ARQ), and signalling network supervision and maintenance functions.

MTP level 3 (signalling network level):
 Routing in the signalling network (using OPC, DPC) between SPs with level 4 users (see SIO at level 2).
MTP level 2 frame formats

- **MSU (Message Signal Unit)**
 - F
 - CK
 - SIF
 - SIO
 - LI
 - Control
 - F

- **LSSU (Link Status Signal Unit)**
 - F
 - CK
 - SF
 - LI
 - Control
 - F

- **FISU (Fill-In Signal Unit)**
 - F
 - CK
 - LI
 - Control
 - F

Level 3 signalling message

- **Network:**
 - National
 - International

- **User part:**
 - TUP
 - ISUP
 - SCCP

Network management
MTP level 2 frames

MSU (Message Signal Unit):
- Contains signalling messages (User Part \equiv SIO)
- The received frame is MSU if $LI > 2$ (number of payload octets, payload = SIF or SF)

LSSU (Link Status Signal Unit):
- Contains signalling messages for link supervision
- The received frame is LSSU if $LI = 1$ or 2

FISU (Fill-In Signal Unit):
- Can be used to monitor quality of signalling link
- The received frame is FISU if $LI = 0$
Routing information in SS7 message

Level 3 signalling message in SIF (Signalling Information Field)

- **MTP management message:**
 - SLC – 4 bit signalling link code

- **MTP SCCP message:**
 - SLS – 4 bit signalling link selection

Routing label

- SLC
- OPC
- DPC
Structure of SS7 ISUP message

MTP ISUP message:
SLS – 4 bit
CIC – 12 bit

Max 256 + 1 octets

<table>
<thead>
<tr>
<th>OpP</th>
<th>MaVP</th>
<th>MaFP</th>
<th>MTC</th>
</tr>
</thead>
</table>

Routing label

- **CIC**
- **SLS**
- **OPC**
- **DPC**

ITU-T structure
ANSI => different

MTC: Message Type Code (name of ISUP message)
MaFP: Mandatory Fixed Part (no LI, no parameter names required)
MaVP: Mandatory Variable Part (LI, no parameter names required)
OpP: Optional Part (LI and parameter names required)
Difference between SLS and CIC

SLS defines the **signalling link** which is used for transfer of signalling information (SLS enables load sharing).

CIC defines the **circuit** (used for a certain circuit switched connection) with which the ISUP message is associated.
Identification of signalling points (SP)

DPC – Destination Point Code (14 bit ↔ 16384 SPs)
- Termination point of application transaction
- Key information for routing within SS7 network
- DPC is inserted by the originating MTP “user”.

OPC – Originating Point Code (14 bit)
- Originating point of application transaction

The “network indicator” in the SIO octet indicates whether the DPC or OPC is an international, national, or network specific SP identifier.
Same signalling point codes can be reused at different network levels

SPC = 277 means different SPs at different network levels
Basic MTP level 3 functions

MTP user → ISUP SCCP

Message distribution → Message discrimination

Message routing

Signalling message handling

Signalling network management

Signalling link → MTP level 2
ISUP (Integrated Services User Part)

Essential for circuit-switching related signalling

Generally used in PSTN (i.e., not only for ISDN)

Features:

Establishment / release of circuit switched connections (basic call control) using link-by-link signalling

End-to-end signalling between two exchanges (for this purpose SCCP + ISUP is used)

Only for signalling between exchanges (never to/from a stand-alone database).

see Bhatnagar, p.77
Example: link-by-link signalling (IAM)

Using MTP-level routing table, STP routes message to DPC = 22

Processing in (transit) exchange(s):
Received message is sent to user (ISUP) that gives B-number to exchange. Exchange performs number analysis and selects new DPC (60) and CIC (20)

Outgoing message:
OPC = 82 CIC = 14 DPC = 22 SLS = 4
MTP + ISUP in SS7

The routing capability of MTP is rather limited (routing tables are entirely based on signalling point codes).

The “real” routing through the network(s) during call setup is performed by exchanges on an exchange-to-exchange basis, using the dialed digits and routing tables.

+358 9 123 4567

Country code National region Subscriber number

exchange ID
Example: link-by-link signalling (non-IAM)

Outgoing MTP MSU:
OPC = 22 CIC = 20
DPC = 60 SLS = 2

Processing in (transit) exchange(s):
Using routing table and incoming routing label, exchange inserts DPC (60) and CIC (20) into outgoing routing label (no number analysis ...)

Outgoing message:
OPC = 82 CIC = 14
DPC = 22 SLS = 4

Using MTP-level routing table, STP routes message to DPC = 22

Otherwise like link-by-link signalling for IAM message, only difference is here
Setup of a call using ISUP

User A Exchange A Transit exchange Exchange B User B

Setup IAM IAM Setup

Q.931 Link-by-link signalling (number analysis)

Alert ACM ACM Alert

Connect ANM ANM Connect

Charging of call starts now

Link-by-link signalling (no number analysis)
Some basic ISUP messages

- IAM – Initial Address Message
- ACM – Address Complete Message
- ANM – Answer Message
- REL – Release Message
- RLC – Release Complete
Intelligent Network (IN) Concept

Operator implements service logic (IN Service)

Service Control Point (a network element containing the service logic, a database or register)

Service Switching Point (enables service triggering in an exchange)
SCCP (Signalling Connection Control Part)

Essential for non-circuit-switching related signalling

Features:

- Essential for end-to-end signalling & database access
- Global Title Translation (GTT) for enhanced routing
- SubSystem Number (SSN) analysis at destination
- 4 Transport Service Classes

OSI Layer 3 functionality
OSI Layer 4 functionality
SS7 connection setup using SCCP

Signalling connection, *not* circuit switched connection (= call), “setup” => several higher level signalling transactions over the same connection possible
Global title translation (GTT) is required when the originating exchange (SSP) knows the “global title” instead of the point code of the database (SCP).

- **SSP**:SSP
- **STP**:STP SCP
- **SCP**:SSP

Global title (GT) example:

- **Find SCP using GT (0800 number)**
- **Change GT (0800 number) into DPC + SSN**

Network node with GTT capability
Global title translation (GTT) is usually done in an STP.

Advantage: Advanced routing functionality (= GTT) needed only in a few STPs with large packet handling capacity, instead of many exchanges.
Example: SCCP connection with GTT

No SCCP/GTT functionality

STP

SCCP

MSC/VLR located in Espoo

SPC = 82

Outgoing message:
OPC = 82 DPC = 32

SCCP: Global title (IMSI)

SCCP/GTT functionality

STP

SPC = 32

Processing in STP:
Received message is given to SCCP for GTT.
SCCP finds the DPC of the HLR: DPC = 99

STP

SCCP

HLR located in Oslo

SPC = 99
Four classes of service in SCCP

Class 0: Basic connectionless class. Each information block (SCCP message) is transmitted from one SCCP user to another SCCP user independently.

Class 1: Sequenced (MTP) connectionless class. All messages use the same SLS code.

Class 2: Basic connection-oriented class. Virtual connections are set-up and released + using same SLS code + segmentation & reassembly (SAR)

Class 3: Flow-control connection-oriented class. VC control + same SLS codes + SAR + flow control
Example: Signalling in GSM core network

ISUP for signalling between exchanges (MSC, GMSC)
MAP for signalling to/from databases (VLR, HLR, AuC, EIR)
IN
Intelligent Network

• basic concept
• technology
• IN services
The intelligent network concept: intelligence is taken out of exchanges and placed in computer nodes that are distributed throughout the network.

Intelligence => access to various databases

This provides the network operator with the means to develop and control services more efficiently. New capabilities can be rapidly introduced into the network. Once introduced, services are easily customized to meet individual customer's needs.
Intelligent Network (IN) Concept

- **Operator implements service logic (IN Service)**

- **Service Control Point**
 (a network element containing the service logic, a database or register)

- **Service Switching Point**
 (enables service triggering in an exchange)

- **STP**
- **SCP**
- **SSP**
- **MAP INAP CAP**
- **ISUP**

Exchange
IN service subscriber and customer

In a typical IN service scenario, the network operator or a 3rd party service provider implements the service for one or several subscribers, after which customers can use the service.

Service subscriber = company offering the service (e.g. the 0800 number that anybody can call)

Customers = those who use the service (e.g. those who call the 0800 number)

Confusion possible:
IN service subscriber ≠ PSTN subscriber
Typical call-related IN procedure (1)

1. Call routing proceeds up to Exchange
2. Trigger activated in Basic Call State Model at SSP
3. SSP requests information from SCP (database)
4. SCP provides information
5. Call routing continues (routing to next exchange)
Typical call-related IN procedure (2)

2. Trigger activated in Basic Call State Model at SSP

Typical triggers:
- Called number (or part of number)
- Destination busy
- Caller does not answer in predefined time
4. **SCP provides information**

Example: Number translation in SCP

SSP sends 800 number (0800 1234)
SCP translates into “real” number which is used for routing the call (+358 9 1234567)
Examples of how SCP can affect call (1)

SCP decides the destination of the call depending on the calling time or date:

9.00 - 17.00 => Destination 1
17.00 - 9.00 => Destination 2
Examples of how SCP can affect call (2)

SCP decides the destination of the call depending on the location of calling user:

- Calling user in southern Finland => Destination 1
- Calling user in northern Finland => Destination 2
Examples of how SCP can affect call (3)

SCP decides the destination of the call depending on the traffic load in the network:

- Traffic load situation 1 => Destination 1
- Traffic load situation 2 => Destination 2
Intelligent Peripheral (IP) can (a) send announcements to the user (usually: calling user) and (b) receive DTMF digits from the user. IP is not a database; connection to exchange not via SS7, instead via digital TDM channels.
Typical applications:

1) whenever services need user interaction
2) user authentication
User interaction in IN service

1. SCP orders IP to select and send announcement
2. IP sends announcement to calling user
3. User replies by sending DTMF number(s) to IP
4. IP sends number information to SCP
User authentication (1)

1. SCP orders IP to select and send announcement
2. IP sends announcement to calling user
3. User sends authentication code (in DTMF form) to IP
4. IP sends authentication code to SCP

Announcement: “please press your PIN code ...”
When connected to the network via a digital subscriber line, the calling user can be notified with a digital message ("please press your PIN code ...") instead of having to use the corresponding voice announcement.
IN services

A large number of IN services can be implemented by combining different “building blocks”:

- called number translation (at SCP)
- routing decision based on calling number, time, date, called user busy, called user alerting timeout, network load ...
- announcements (from IP) or user notification (<= ISDN user signalling)
- DTMF number reception (at IP) and analysis (at SCP)
- customised charging (at exchanges)
IN service examples

“Traditional” IN services:
- Freephone / customised charging schemes
- Virtual Privat Network (VPN)
- Number portability
- Televoting

“IN” in mobile networks:
- Mobility management (HLR, VLR = databases)
- Security management (Authentication …)
- IN in mobile networks ≈ CAMEL (Customised Applications for Mobile networks Enhanced Logic)
Freephone (800) service

User calls 0800 76543. SSP sends this number to SCP which after number analysis sends back to SSP the real destination address (09 1234567) and call can be routed to the destination. Called party is charged.

Charging: destination (service subscriber) pays the bill
Premium rate service

User calls 0200 34343. SSP sends this number to SCP which after number analysis sends back to SSP the real destination address (09 676567) and call can be routed to the destination. Calling party is charged.

Charging: calling user (customer) pays the bill. Both service subscriber and service provider / network operator make profit.
Virtual private network (VPN) service

A VPN provides corporate customers with a private number plan within the PSTN. The customer dials a private (short) number instead of the complete public number in order to contact another user within the VPN. User authentication is usually required.

Number translation: 1212 => 09 1234567

Customised charging

User authentication
Screening of incoming calls

This is an example of an IN service related to the call destination end. Alert called user only if calling number is 121212 or 234567, otherwise do something else (e.g. reject call or redirect call to another destination).
Further information on SS7

Tutorial:

Books:

SS7 tutorial on the web:
www.iec.org/online/tutorials/ss7