
S-72.423 Telecommunication Systems

Asymmetrical Digital Subscriber Line (ADSL)

1

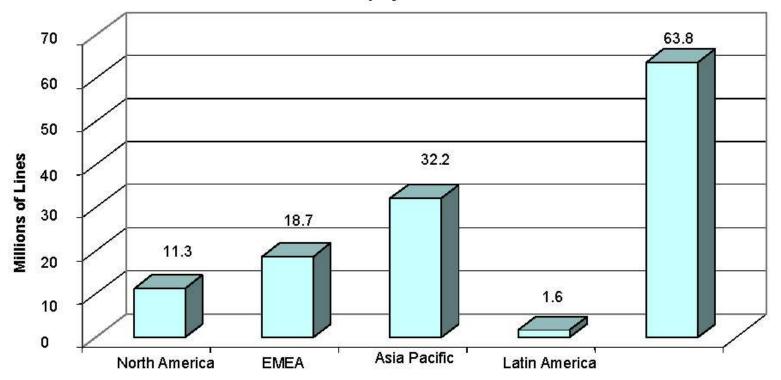
Asymmetrical Digital Subscriber Line

- Physical level (modem technology)
 - Frame structures
 - Modulation
 - Coding
- PSTN local loop as a high-rate digital transmission channel
- Migration issues: Example: Interoperability with ATM
- Flavors of xDSL: performance issues
- Standardization overview

Short history of ADSL

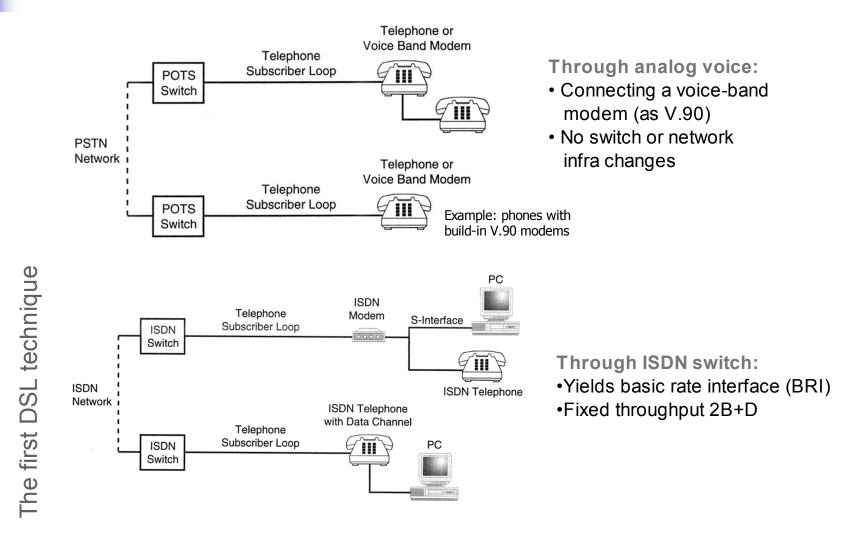
1985	Bell Labs develops OFDM to make traditional copper wires to support new digital services - especially <u>video-on-demand</u> (VOD)
1990	Phone companies start deploying High-Speed DSL (HDSL) to offer <u>T1 service (1.544 Mb/s)</u> on copper lines without the expense of installing repeaters - first between small exchanges
	Phone companies begin to promote HDSL for smaller and smaller companies and <u>ADSL for home internet access</u>
1993	Evaluation of three modulation technologies for ADSL: <u>QAM</u> , <u>DMT</u> and <u>CAP.</u> DSL Forum established on 1994
1995	Innovative companies begin to see ADSL as a way to meet the need for <u>faster Internet access</u>
1998 1999	DMT adopted by almost all vendors following <u>ANSI T1.413 - issue</u> <u>2</u> (in contrast to CAP) ITU-T produced ADSL standards <u>G.992.1</u> (G.full: 8M/640k) and <u>G.992.2</u> (<u>G.lite: 1.5M/512k</u>)

... history

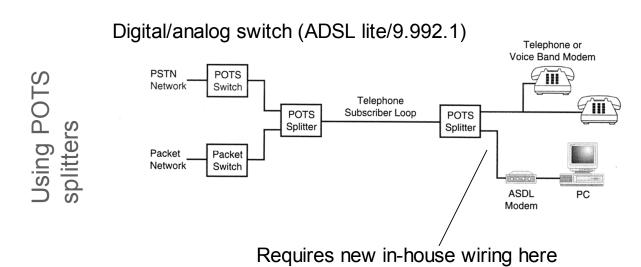

- 2001 -- Number of DSL subscribers **18.7** million worldwide
- 2002 -- ITU-T completed G.992.3 and G.992.41 standards for ADSL2
- 2003 -- ADSL2plus released (G.992.5). It can gain up to 20 Mbps on phone

lines as long at 1.5 km. **30** million ADSL users worldwide

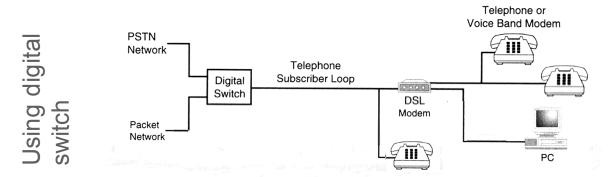
2004 -- VDSL2 standards under preparation in DSL forum


Worldwide deployment of xDSL technologies

DSL Deployment - March 2004

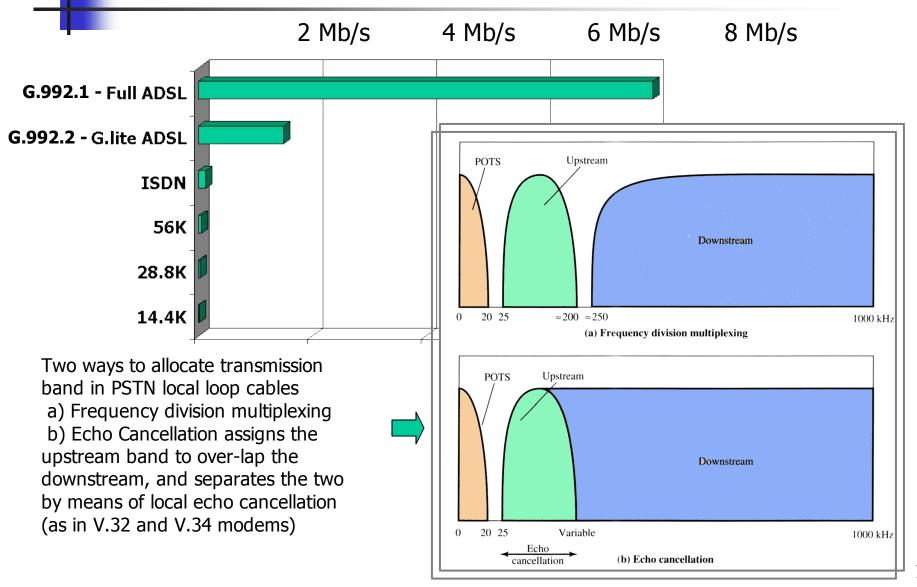


Source: Point Topic, March 2004


Development of digital access in PSTN

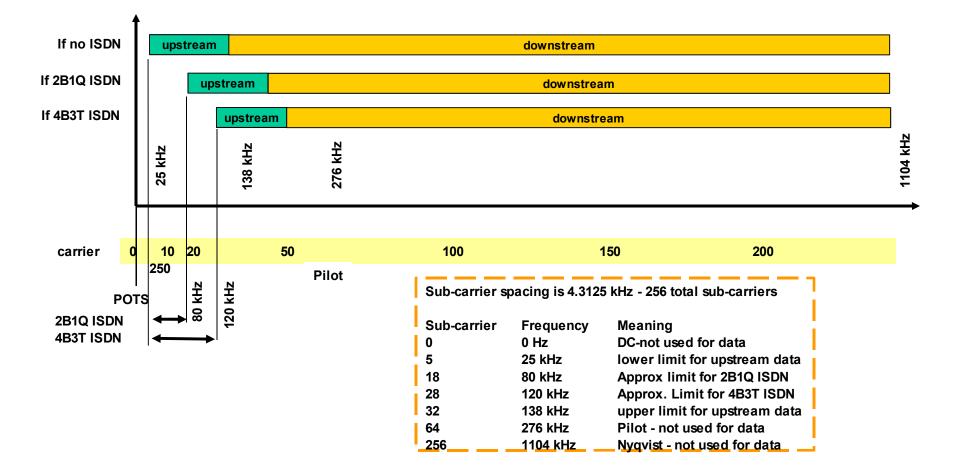
Digital access in PSTN (cont.)

POTS FDM splitters separate voice and DSL channels


Intelligent switch recognizes in CO subscriber devices and adjusts its HW parameters (PSTN telephone, voice-band modem, DSL modem) accordingly

Motivation for adaptation of ADSL

- Need for <u>high-speed Internet access</u> also telephone modem speeds have peaked and cable modems have turned out to lack speed with many users
- Transmits <u>high speed data to local loop</u> by using unshielded 2wire twisted pairs (often no repeaters required)
- DSL allows rates varying from <u>160 kb/s up to 50 Mb/s</u> on down link (DL) depending on technology used!
- In the most popular commercial ADSL (G.992.1) maximum rate 640 kbit/s upstream and 8 Mb/s downstream
- Different xDSL techniques developed to serve symmetric and asymmetric traffic requirements and different rates (STM and ATM supported by G.992.1 ADSL)


STM-n: Synchronous Transfer Module (of SDH): DS-1,2: 1.544 Mb/s, 6.312 Mb/s ATM: Asynchronous Transfer Mode DL: Down Link - Down stream

ADSL rates (DL) and channel frequency band allocation in local loop

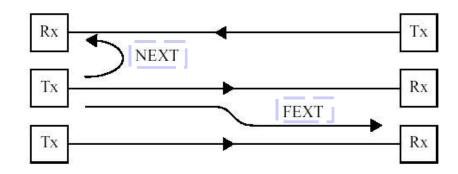
10

DMT frequency allocation with ISDN [2]

Physical realization and frame structures

ITU-T G.992.1: Asymmetric Digital Subscriber Line (ADSL) Transceivers

- Target: physical layer characteristics of ADSL interface to two-wire twisted metallic cable pairs with mixed gauges (no loading coils, but bridged taps are acceptable) (min 6.144Mbs/640kbs)
- A single twisted pair* of telephone wires is used to connect the ADSL transceiver unit (ATU)-C(central office) to the ATU-R(remote).
- Transmission unit can simultaneously convoy:
 - downstream (C->R) simplex (broadcasting) high speed bearers,
 - low speed duplex bearers,
 - a baseband **analogue** duplex channel (POTS compatibility),
 - ADSL line overheads for
 - framing,
 - error control
 - operations and maintenance (O&M)
- Bearer channels can coexist with voiceband & ISDN (G.961 : Appendices I and II) that is separated with filtering

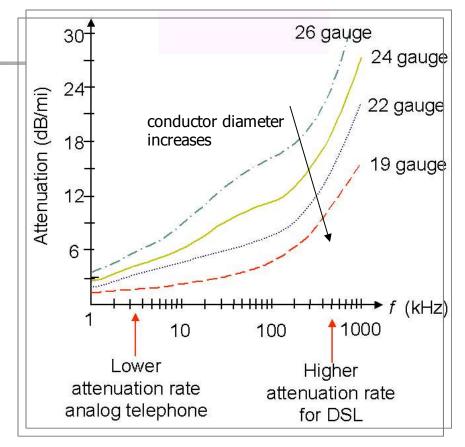

*ADSL2 offers bundling of cables for increased capadity

Topics of ITU-T G.992.1

- Basic capabilities specified in G992.1:
 - combined options and ranges of the simplex and fullduplex bearer channels
 - line code and the spectral composition of the ATU-C and ATU-R signals
 - electrical and mechanical specifications of the network interface
 - organization of transmitted and received data into frames
 - functions of the operations channel
 - ATU-R to service module(s) interface functions
 - **ATM support** (Transmission Convergence Sub-layer)
- Optional capabilities: echo cancellation, trellis coded modulation, transport of a network timing reference, transport of STM and/or ATM, reduced overhead framing modes

ADSL challenge: local loop cables

- Crosstalk:
 - Near-end crosstalk (NEXT) appears between TX and RX of the near-end
 - Far-end crosstalk (FEXT) appears between TX and RX of the far-end
- **Interference**: other lines, overlapping RF-spectra
- Bridged taps, loading coils
- Weather-conditions (moisture, temperature) affect crosstalk and line impedance
- **Attenuation!** Frequency dependent (next slides)



Attenuation of twisted cables

- Comes in different wire thickness, e.g. 0.016 inch (24 gauge)
- The longer the cable, the smaller the bandwidth

Standard	Data Rate	Distance
DS-1	1.544 Mbps	18,000 feet, 5.5 km
DS-2	6.312 Mbps	12,000 feet, 3.7 km
1/4 STS-1	12.960 Mbps	4500 feet, 1.4 km
1/2 STS-1	25.920 Mbps	3000 feet, 0.9 km
STS-1	51.840 Mbps	1000 feet, 300 m

Practical xDSL data rates for 24-gauge twisted pair

Twisted cable attenuations

DS-1,DS-2: Digital Signal 1,2

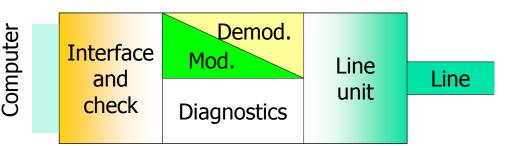
Synchronous Digital Hierarchy (SDH) levels

STS-1: Synchronous Transport Signal level-1, Synchronous Optical Network's (SONET) physical level signal

How ADSL meets local loop challenges?

- Restricted bandwidth?
 - careful allocation of bits for each sub-carrier
- Changing circumstances (whether, bridged taps)?
 - Adaptive setup phase (next slide)
- High attenuation?
 - Usage of relatively high bandwidth for transmission
- Compatibility to old POTS?
 - Own band for POTS by FDM (splitters)
- Interference and cross-talk?
 - Coding
 - Interleaving
 - Modulation (OFDM/DMT)
 - Echo cancellation

I I	Note: loading coils must
	be removed from cables
	in order to ADSL to work!

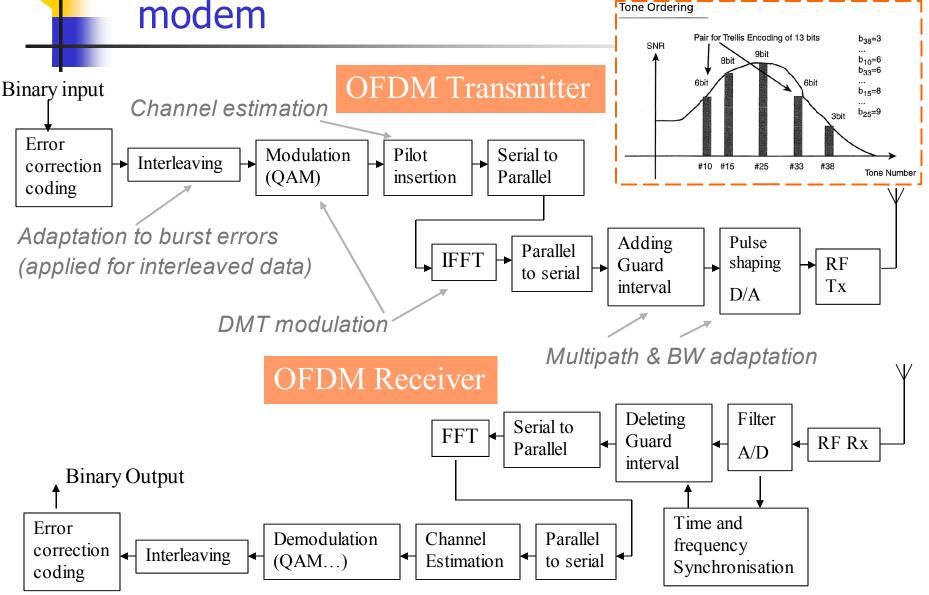

Data Rate	Wire Gauge	Distance	Wire Size	Distance
1.5 or 2 Mbps	24 AWG	18,000 ft	0.5 mm	5.5 km
1.5 or 2 Mbps	26 AWG	15,000 ft	0.4 mm	4.6 km
6.1 Mbps	24 AWG	12,000 ft	0.5 mm	3.7 km
6.1 Mbps	26 AWG	9,000 ft	0.4 mm	2.7 km

Performance of G.992.1

Start-up phases of Rate Adaptive ADSL (RADSL)

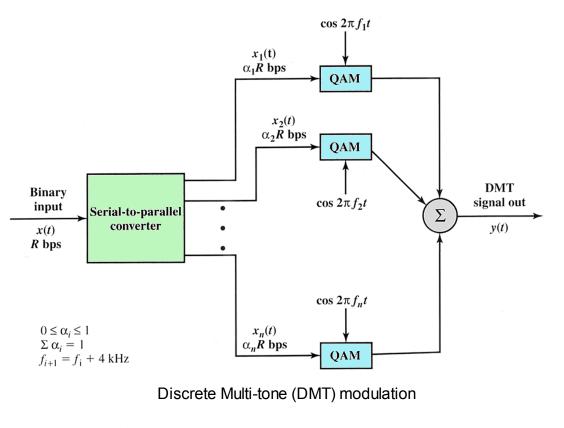
- RADSL modems apply sophisticated **hand shaking** to initiate transmissions that include
 - Activation: notice the need for communications
 - Gain setting/control: Adjust the power for optimum transmission and minimum emission
 - Channel allocation / bit rate assignment (DMT)
 - **Synchronization**: Clocks and frames to the same phases
 - Echo cancellation: (if used, required for both ends)
 - Channel identification and equalization

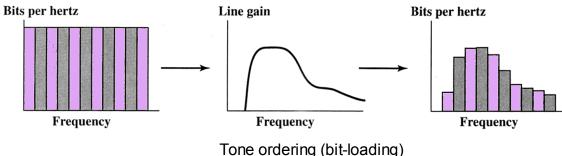
ADSL modem technology



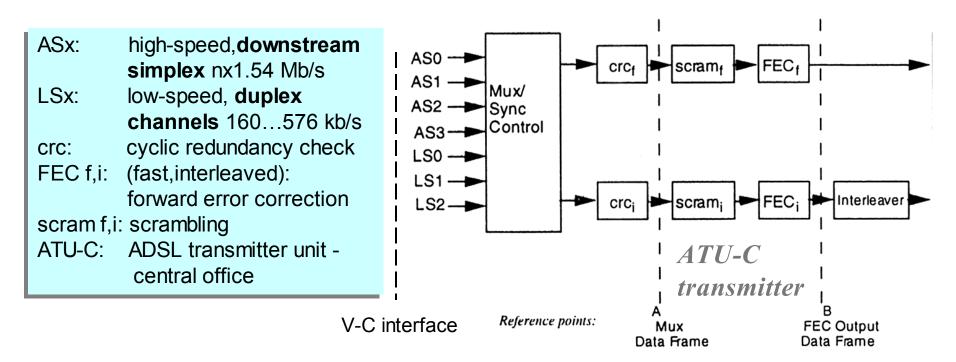
- ADSL provides fast point-to-point connections by modem (modulator/demodulator technology)
- All modems (including xDSL modems) have many common features
 - Analog parts
 - analog transmit and receiver filters
 - DAC, automatic gain control, ADC
 - Digital parts
 - modulation/demodulation, constellation mapping
 - coding/decoding
 - Reed-Solomon
 - Trellis
 - bit packing/unpacking (compressed transmission)
 - framing
 - interleaving
 - scrambling

ADSL- modem technology (cont.)


- xDSL modems apply also more advanced techniques:
 - Carrierless AM/PM (CAP) or QAM line codes (97% of USA installations apply this method)
 - Fast Fourier Transforms for Discrete Multi-Tone Modulation (DMT) - the dominant method
 - tone ordering -> water pouring bit allocations (adaptation to transfer function) & peak-to-average ratio (PAPR) decrease
 - channel equalization (tone-by-tone different rates)
 - guard intervals (adaptation to channel delay spread)
 - Turbo coding
 - Adaptive echo canceller


Block diagram of an ADSL modem

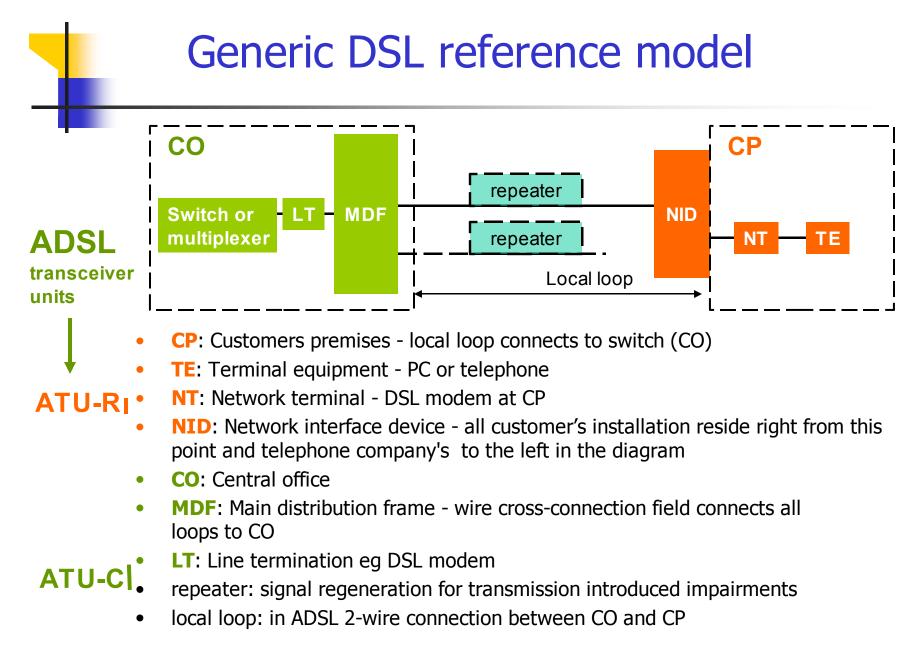
The principle of DMT* modulation [4]


- Transmission band divided into 4 kHz subchannels
- Tone ordering: On initialization test-tone determines number levels in QAM for each subchannel (each can carry 0 - 32 kb/s)
- Number of subchannels 256
- Current downstream rates 256 kb/s ... 8 Mb/s depending on line conditions and operator specifications in ADSL

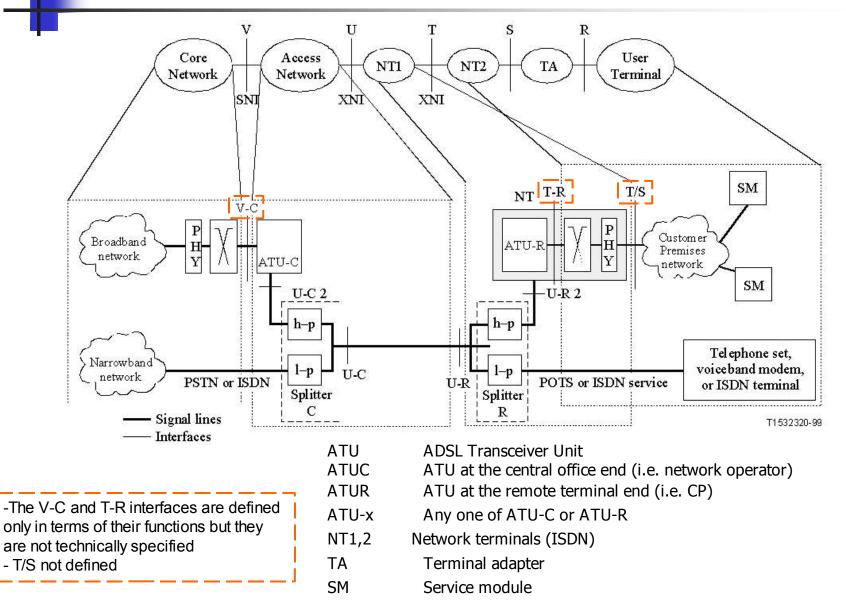
ADSL subchannels [3]

- G.992.1 specifies DMT modem for ASDL applications
- Downstream:
 - 2.208 MHz sampling rate, 256 subchannels at 0 ... 1.104 MHz
 - DMT symbol rate 4000 symbols /s. Each sub-channel is 4.3 kHz wide
 - max rate 32 kb/s per subchannel (compare to V.90 modem!)
- Upstream:
 - 275 kHz sampling rate, 32 tones 0 ... 138 kHz

Multi-tone modulation (cont.)

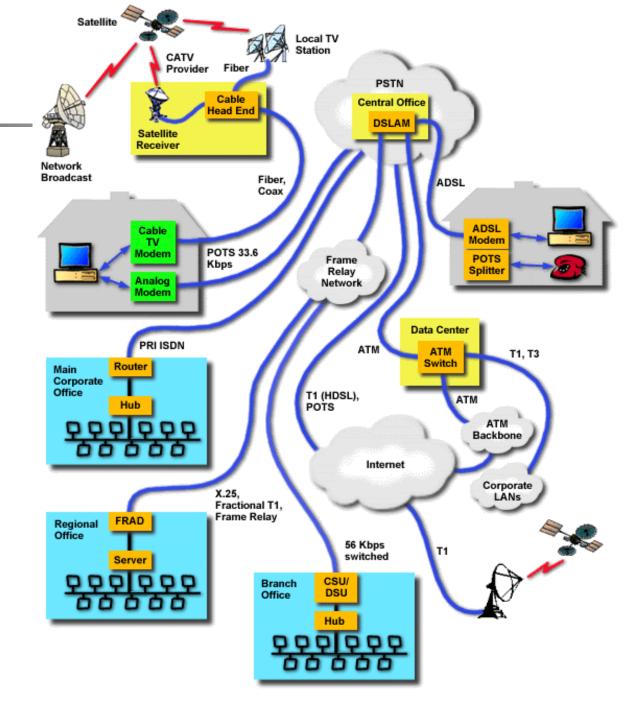

- In channel activation phase different sub-channels are allocated for their optimum rates (by changing number of levels in modulation)
- DMT-ADSL supports both synchronous transfer modules (STM) of SDH and asynchronous transfer mode (ATM, AS0 used for primary cell stream)
- ADSL modems offer **two data paths**:
 - Fast
 - low latency (2ms)
 - real-time traffic
 - Interleaved
 - low error rate
 - Reed-Solomon encoding (concatenated convolutional codes) at the expense of increased latency

ADSL system total data rate

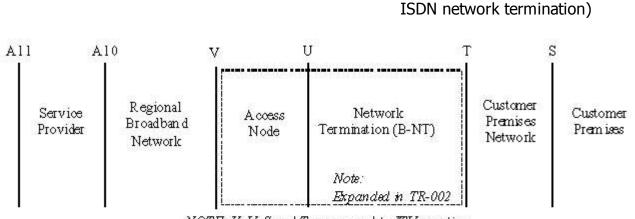

- Total data rate=Net data rate + System overheads
- The net data rate is transmitted in the ADSL bearer channels
- ADSL system overheads
 - an ADSL embedded operations channel, eoc (O&M)
 - an ADSL overhead control channel, aoc
 - crc check bytes
 - fixed indicator bits for O&M*
 - Reed-Solomon FEC redundancy bytes
- These data streams are organized into ADSL frames and super-frames for the downstream and upstream data

ATU: ADSL transceiver unit, -C : Central office, -R: Remote unit²⁸

G.992.1 (ITU-T)/T1.413 (ANSI) reference model



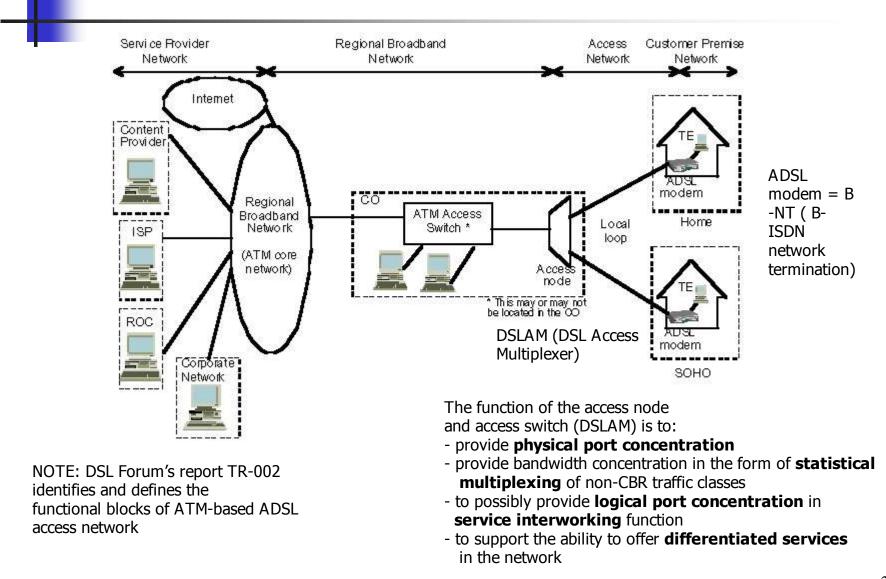
DSLAM provides access to LANs, WANs and other services at CO


Using

ADSL

- ADSL (G.992.1) supports traffic over
 - ATM
 - STM
 - ISDN
- Indirect support for example for
 - X.25
 - Frame relay
 - Internet core

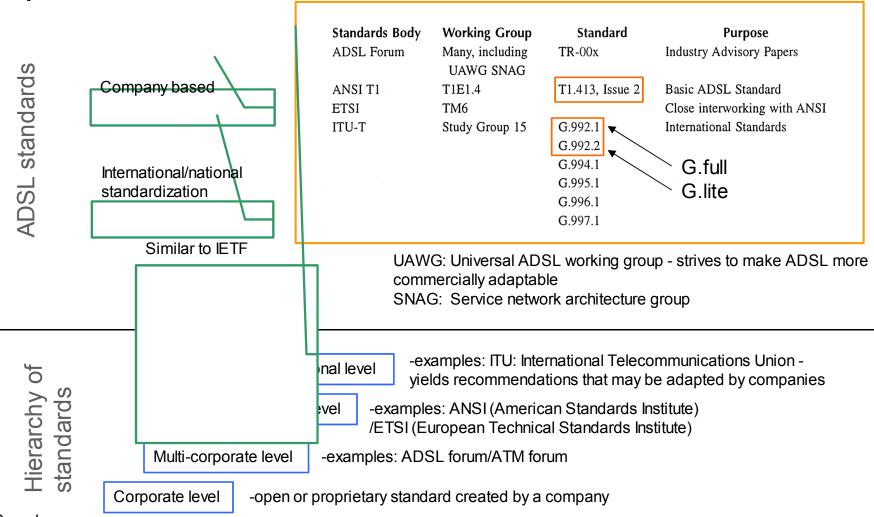
DSL Forum's End-to-end Reference Model



NOTE: V, U, S and T correspond to ITU practice All and All are borrowed from DAVIC as there are no ITU equivalents

- Includes the following subnetworks:
 - customer premise network
 - access network
 - regional broadband network
 - service provider networks

ADSL modem = B - NT (B-


ATM over ADSL for broadband networking

Reference: DSL Forum: TR-012-Broadband Service Architecture for Access to Legacy Data Networks over ADSL (PPP over ATM)

Standardization bodies

See also:

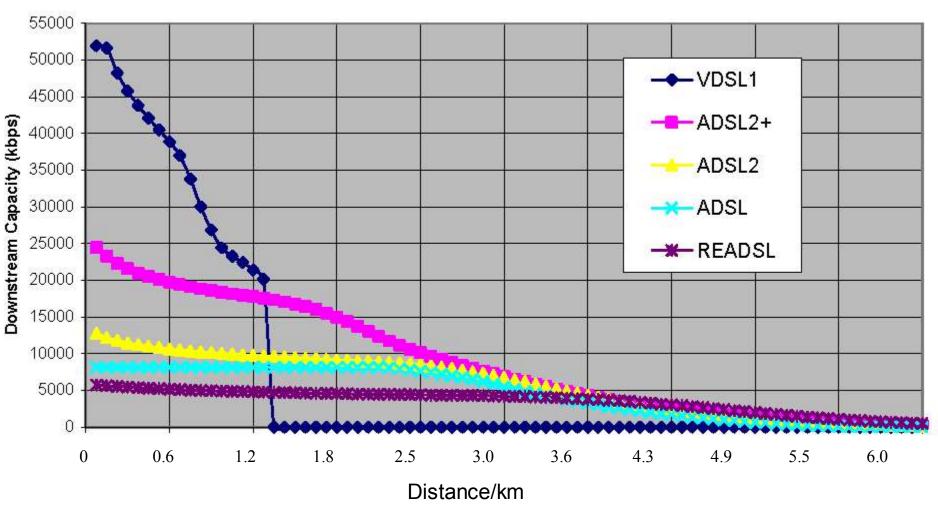
http://www.ktl.com/testing/telecoms/xdsl-standards.htm

Recently ratified ITU-T DSL standards

				SERVICE	
FAMILY	ITU	NAME	RATIFIED	RESIDENTIAL	BUSINESS
ADSL	G.992.1	G.dmt	1999	~	~
ADSL	G.992.2	G.lite	1999	2	
ADSL2	G.992.3	G.dmt.bis	2002		v
ADSL2	G.992.4	G.lite.bis	2002	*	
ADSL2	G.992.5	ADSL2 PLUS	2003		4
ADSL2	6.992.3	Reach Extended	2003	~	
SHDSL	G.991.2	G.SHDSL Single-pair High-speed DSL	2001		¥
VDSL	G.993.1	Very-high-data-rate DSL	2004	~	~

Reference: DSL Forum: DSL Anywhere - Issue 2, Sep. '036

xDSL flavors and performance comparison


Overview to xDSL techniques

				I
ADSL	Asymmetric Digital Subscriber Line	Asymmetric: Downstream: 1.5Mbps -> 8Mbps Upstream: 16Kbps -> 640Kbps Range : 5400 m - 1.544Mbps 4800 m - 2.048Mbps 3600 m - 6.312Mbps 2700 m - 8.448Mbps	Internet access VoD and video access services Remote LAN access Interactive multimedia	-ATM / STM compatible -2-wire compatible - G.992.2 requires splitter and separate phone line from box to wall
VDSL	Very High Data Rate Digital Subscriber Lin	Asymmetric: Downstream: 13Mbps -> 52Mbps Upstream: 1.6Mbps -> 2.3Mbps Range: 1350 m - 12.96Mbps 900 m - 25.82Mbps 300 m - 51.84Mbps	Same as ADSL and HDTV	For short distances, applies ATM

Overview to xDSL techniques (cont.)

DSL	Digital Subscriber Line	Duplex: 160K (2B+D+Management)	ISDN service Voice and data communications	
HDSL	High Data Rate Digital Subscriber Line	Duplex: 2 x T.1 (1.544Mbps) / 2 x E.1 (2.048Mbps) 2 to 4 pairs of copper- wire Range : 3600 meter	T.1 and E.1 service	-Channel associated signaling -2- or 4-wire connections -performance increase by cable bundling
SDSL	Single Line Digital Subscriber Line	Duplex:2 x T.1 (1.544Mbps) / 2 x E.1 (2.048Mbps) 1 pair of copper-wire Range : 3000 meter	Premises access for synchronous services	

Performance comparison

Reference: DSL Forum: DSL Anywhere - Issue 2, Sep. '040

References

[1] T. Starr, J.M. Cioffi, P.J. Silverman: Understanding Digital Subscriber Line Technology, Prentice-Hall

- [2] W.Y. Chen: DSL Simulation Techniques and Standards -Development for Digital Subscriber Line Systems, MacMillan Tech. Publishing
- [3] C.K. Summers: ADSL Standards, Implementation and Architecture, CRC Press
- [4] William Stallings: Data and Computer Communications (7th Ed), Prentice Hall

[5] ANSI T1.413, issue 2 standard