# DECT

(DECT = Digital Enhanced Cordless Telecommunication)
 (previously: Digital European Cordless Telephone)
(Japanese alternative: PHS = Personal Handy phone System)

- more than a simple cordless terminal system!
- 4 basic applications (cordless system, PABX extension, WLL connection, CTM)
- TDD duplex structure (basics, advantages)
- Web sources: <u>www.dect.ch</u>, <u>www.dectweb.com</u>, <u>www.etsi.org</u>

# Four application examples of DECT:

- 1) Cordless system (residential use), only one base station, only intracell handover
- 2) PABX wireless extension (business use, e.g., HUT), many base stations, intracell & intercell handover
- 3) WLL (Wireless Local Loop) connection, instead of wired access lines for connecting users to the PSTN/ISDN
- 4) CTM (Cordless Terminal Mobility), wide area mobility

## Residential use (DECT as cordless terminal)



Only one base station, limited mobility, inter-PP traffic

# Business use (PABX wireless extension)



Intercell handover between base stations is possible

# Wireless local loop (WLL) applications



Up to 5 km possible (utilizing directional antennas, etc.)

## Cordless Terminal Mobility (CTM)

=> Portability over a wider area

Examples:

- 1. Same DECT terminal can be used at home and in office
- 2. DECT terminal can be used at several locations in a city (no handover functionality between these locations)

#### Success of DECT ? (year: 2000; source: DECT Forum)

| Residential: | <ul> <li>25 million terminals sold worldwide</li> <li>60 % of all cordless terminals are DECT</li> <li>90 % in Europe, especially Germany</li> </ul> |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Business:    | <ul> <li>1 million handsets in business use</li> <li>almost 10<sup>5</sup> multicell systems installed</li> </ul>                                    |
| WLL:         | <ul><li>more than 1 million lines installed</li><li>popular especially outside Europe</li></ul>                                                      |

#### TDD (Time Division Duplex) system (GSM ⇔ FDD, 3G systems ⇔ FDD, TDD)

DECT is a TDD system, which means that down- and uplink use the same frequency (but different time slots).

Frequency band of DECT:



Two advantages of TDD:- can adapt to asymetric traffic(w.r.t. FDD)- reciprocal radio channel

# FDMA / TDMA system

Like GSM, DECT is a FDMA/TDMA system. The multiple access structure uses  $10 \times 12 = 120$  bi-directional channels. Each channel can carry 32 kbits/s.



#### TDD ⇔ reciprocal radio channel



TDD system (e.g., DECT): Multipath fading is exactly the same in uplink and downlink. open loop power control

# Multipath mechanism of fading

Suppose the signal arrives via two propagation paths at the receiver, and the received signal replicas have the same strength (*a*) but arrive after different delays ( $\tau_1$  and  $\tau_2$ )

At frequency  $f_1$ :

$$r_1(t) = a \left( e^{j 2\pi f_1 \tau_1} + e^{j 2\pi f_1 \tau_2} \right) e^{j 2\pi f_1 t}$$

At frequency  $f_2$ :

$$r_2(t) = a \left( e^{j 2\pi f_2 \tau_1} + e^{j 2\pi f_2 \tau_2} \right) e^{j 2\pi f_2 t}$$

When  $r_1(t)$  is fading,  $r_2(t)$  may be strong (or vice versa), if the frequency and/or delay difference is sufficiently large.

# Dynamic channel selection and allocation

- 1. All idle channels are scanned at regular intervals (30 s).
- 2. An RSSI (Received Signal Strength Indication) list is generated.
- 3. When a new channel is needed, the DECT terminal (PP) or base station (FP) selects an idle channel with minimum interference for this purpose, utilizing the RSSI list.
- 4. In this way, the interference level in the DECT network is kept as low as possible.

#### Mobile-controlled handover

MCHO  $\Leftrightarrow$  Handover is always initiated by the terminal / PP (PP = DECT portable part)

- 1) downlink interference => intracell handover to a better channel (at another frequency)
- 2) uplink interference => Base station (RFP) signals to terminal => intracell handover
- 3) intercell handover due to better quality connection to another base station

#### Intracell handover





Interference on channel 1 causes an intracell handover to channel 2

#### Intercell handover



#### GAP (Generic Access Profile)

Minimum mandatory requirements (October 1997) allow a 3.1 kHz teleservice connection to be established, maintained and released between FP and PP with the appropriate access rights, irrespective of whether the FP provides residential, business or public access services.

- GIP DECT/GSM Interworking Profile IIP – DECT/ISDN Interworking Profile RAP – Radio Local Loop Access Profile CAP – CTM Access Profile
- DSP => DPRS = DECT Packet Radio Service (new!)
- other profiles

#### Security in DECT

1. User identification (PIN code)

DECT: ? GSM: yes

2. Authentication

DECT: yes GSM: yes

3. Encryption of the air interface during transmission

DECT: optional GSM: yes

# Authentication

