72.630 Capacity enhancement methods for radio interface To be returned before 5.02.2005

Home assignment 1

1.

The transmitter generates two hypotheses H_1 and H_0 with the equal probability 0.5. When hypothesis H_1 is true the source generates either amplitude 3 or -1. The signal amplitude 3 is selected with probability $p_{1,3} = 0.1$ and the amplitude -1 with probability $p_{1,-1} = 0.9$.

When hypothesis H_0 is true over the channel is transmitted either amplitude -3 or 1. The signal amplitude -3 is selected with probability $p_{0,3} = 0.1$ and to amplitude 1 with probability $p_{0,-1} = 0.9$.

If we do correct decision there is no penalty $C_{i,j} = 0$, i = j. In case of wrong decision the cost is $C_{i,j} = 1$, $i \neq j$.

The noise in the channel is Gaussian.

- 1) Derive the optimal test.
- 2) Calculate the error probability by using exact function, $\frac{1}{2} erfc(\sqrt{SNR})$, and by using approximation with $\frac{1}{2} \exp(-SNR)$. Evaluate the bound for the error probability when the noise variance is -3 and $-10 \ dB$: Noise $Var \ dB = [-3 \ -10] \ dB$.

2.

In case of hypothesis H_1 the source generates the sequence [-1 1 1 -1 0]. To hypothesis H_0 corresponds the sequence [0.7 -0.4 0.4 -0.4 -0.3]. The noise in the channel is Gaussian. If we do correct decision there is no penalty $C_{i,j} = 0$, i = j. In case of wrong decision the cost is $C_{i,j} = 1$, $i \neq j$.

Derive the optimal test for deciding between the hypothesis H_1 and H_0 .