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Introduction

Channel coding theorem suggest that randomly generated code

with appropriate distribution is likely good if the block length is

high.

Problem: Decoding

- Without the structure codes with long block lenghts difficult to

decode.

We can avoid the fully random codes since any code with the

spectrum resembling random code is a good code.

The random like codes can be generated by interleaver.

Interleaver performs permutation of the bit sequence.

Permutation can be on the information bit sequence or on the

parity bits.
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Parallel concated convolutional codes (PCCC)
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Figure 1: Encoder
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Decoding turbo codes

• The parallel-concatenated convolutional code cannot be

decoded by standard serial dynamic programming algorithm.

- The number of states considered in trellis evaluation of two

interleaved code is squared compared to the forward or

backward calculations of one code.

- Changing a symbol in one part of the turbo-coded codeword

will affect possible paths in this part and also in the distant

part where this bit is ”interleaved” in the other codeword.

- Optimal path in one constituent codeword does not have to

be optimal path in the other codeword.
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Berrou approach

• Calculate the likelihood of each bit of the original dataword of

being 0 or 1 accordingly to first code trellis.

• The second decoder uses the likelihood from the first decoder

to calculate the new probability of the received bits but now

accordingly to the received sequence of the second coder y(2).

• Bit estimate from the second decoder is feed again into first

decoder.

• Instead of serially decoding each of the two trellises we decode

both of them in parallel fashion.
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Random like
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Figure 2: The ideas influencing evolution of turbo coding. Accordingly

to fig. 1 from Battail97.
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Code as a constraint

• The bit estimates calculated based on the coder structure are

aposteriori probabilities of the bit constrained by the code.

• Contraint means that among of all possible bit sequences only

some are allowed - they are possible codewords. The codewords

limit the possible bit sequecnes.

• The aposteriori probability is calculated over the probabilities

of possible codewords.

• The rule of the conditional probability

P (A|B) = P (A,B)

P (B)

where A correspond to a event that a certain bit in the

codeword is 1 (or zero). B requires that the bit sequence is

allowable codeword.
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Example: repetition code

• We have three samples c1,c2,c3.

• If to take the samples one by one they can be either zero or one.

• We have additional information: the samples are generated as a

repetition code.

• Let denote the valid configurations as S = {(c1, c2, c3)}.
• The set of possible codewords (the constraint set) is

S = {(0, 0, 0) , (1, 1, 1)}.
• In our case the a posterior probability for the sample c3 = 1 is

p
post
3 =

∑

(c1,c2,c3)∈S,
c3=1

P (c1, c2, c3)

∑

(c1,c2,c3)∈S
P (c1, c2, c3)

In the numerator is summation over all configurations in S

such that c3 = 1, in the denominator is the normalisation, the

sum of all the probabilities of all configurations in S.
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• If the prior probabilities are independent the joint probability

can be factorised

P (c1, c2, c3) = P (c1)P (c2)P (c3)

• The values for the prior probabilities could be acquired by

measurements.

• A numerical excample: We have observed the samples and

concluded that the samples have values 1 with the following

probabilities

P (c1 = 1) =
1
4 ,P (c2 = 1) =

1
3 ,P (c3 = 1) =

1
2 ,

where ci stands for the i-th observed sample and i = 1, 2, 3.

What is the probability that the third bit is one?
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• The probability of the third sample being one is

p
post
3 =

p1p2p3

p1p2p3 + (1− p1) (1− p2) (1− p3)

• Our equation in numerical values

p
post
3 =

1
4 · 1

3 · 1
2

1
4 · 1

3 · 1
2 +

(

1− 1
4

) (

1− 1
3

) (

1− 1
2

) = 0.1429

• The probability of p3(c3 = 0)

p3(c3 = 0) =
(1− 1

4 )(1− 1
3 )(1− 1

2 )
1
4
· 1
3
· 1
2
+(1− 1

4 )(1− 1
3 )(1− 1

2 )

= 0.8571 = 1− p
post
3
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• By using likelihood ratio we can simplify further

p
post
3

(1−p
post
3 )

=

∑

(c1,c2,c3)∈S,
c3=1

P (c1,c2,c3)

∑

(c1,c2,c3)∈S
c3=0

P (c1,c2,c3)

⇒ p1·p2·p3

(1−p1)·(1−p2)·(1−p3)

= p1

(1−p1)
· p2

(1−p2)
· p3

(1−p3)

• In the logarithmic domain

ln
p (c1 = 1) p (c2 = 1) p (c3 = 1)

p (c1 = 0) p (c2 = 0) p (c3 = 0)

= ln
p (c1 = 1)

p (c1 = 0)
+ ln

p (c2 = 1)

p (c2 = 0)
+ ln

p (c3 = 1)

p (c3 = 0)

Lpost(c3) = L(c1) + L(c2) + L(c3)
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• Probability 0.5 indicates that nothing is known about the bit.

L(c3) = 0

• Even if we do not know aything about the bit but we know

probabilties for the other bits we can calculate the aposteriori

probability for the unknown bit.

Lpost(c3) = L(c1) + L(c2)

• The posteriori probability calculation for a bit can be

separated into two parts:

− part describing prior probability

− part impacted by the constraint imposed by the code. This

later part is calculated only based on the probabilities of

other bits.
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Parity-check

• Assume now that there can be even number of ones among the

three samples S = {(0, 0, 0) , (1, 1, 0) , (1, 0, 1) , (0, 1, 1)}
• The first two bits are either 0 or 1 the third bit is calculated as

XOR of first two bits.

• Assume the measured probability for the first bit is 0.5

• The posterior probability of the first sample is

p
post
1 =

p2 (1− p3) + (1− p2) p3

p2 · p3 + p2 · (1− p3) + (1− p2) · p3 + (1− p2) · (1− p3)

• The probability that the first sample is 1 is given by the

probability that exactly one of the other two samples is 1.

• The probability that the first sample is 0 is given by the

probability that both other samples are 0 or both of them are 1.
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• Likelihood ratio for the third sample posterior probability is

ppost (c1 = 1)

ppost (c1 = 0)
=

p1 (1− p2) + (1− p1) p2

p1p2 + (1− p1) (1− p2)

=
1
4

(

1− 1
3

)

+
(

1− 1
4

)

1
3

1
4

1
3 +

(

1− 1
4

) (

1− 1
3

) = 0.595
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Parity check in log domain

• In logarithmic domain can be separated the prior for the bit

and information from the other bits.

ln

(

p1(c1 = 1) · p ((c2 ⊕ c3) = 1)

p1(c1 = 0) · p ((c2 ⊕ c3) = 0)

)

=

ln

(

p1(c1 = 1)

p1(c1 = 0)
· p2(c2 = 1)p3(c3 = 0) + p2(c2 = 0)p3(c3 = 1)

p2(c2 = 0)p3(c3 = 0) + p2(c2 = 1)p3(c3 = 1)

)

=

L1(c1) + ln

(

p2(c2 = 1)p3(c3 = 0) + p2(c2 = 0)p3(c3 = 1)

p2(c2 = 0)p3(c3 = 0) + p2(c2 = 1)p3(c3 = 1)

)
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Probabilities in log domain

• Here we give the probability calculation folmulas for the binary

code, GF(2).

• The log-likelihood ratio (LLR) of c is

L(c) = ln
p(c = 1)

p(c = 0)
= ln

p(c = 1)

1− p(c = 1)

p(c = 1) =
eL(c)

1 + eL(c)
=

1

1 + e−L(c)
⇒

p(c = 0) = 1− p(c = 1) =
1

1 + eL(c)
=

e−L(c)

1 + e−L(c)
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Incorporating proababilities from different
encoders

• Often we have two or more independent ways to calculate the

aposteriori probability of the bit.

• The bit estimates from different sources are similar to

repetition code. All the estiamtes have to have the same bit

value.

• Because all the estiamtes have to be either 0 or 1 in log domain

we can simple sum together the loglikelihood ratios from

different estimations.
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Single Parity Check Product Code (Example)

• SPC product code - a simple example of a concatenated code
• Two separate coding steps - horizontal, vertical

d
 p

h


p

v


L

ev


L

eh


Figure 3: Two dimensional product code

k1 × k2 data array d; n2 − k2 parity bits ph; n1 − k1 parity bits pv,

Leh, Lev stand for the extrinsic LLR values learned from the

horizontal and vertical decoding steps.
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Numerical example

d1 d2 d3 d4 p1h p2h p1v p2v

+1 +1 +1 −1 +1 −1 +1 −1

0.25 2.0 5.0 1.0 1.0 −1.5 2.0 −2.5

d1 d2 p1h

d3 d4 p2h

p1v p2v

⇒

+ + +

+ − −

+ −

⇒

Lc(x1) = 0.25 Lc(x2) = 2.0 Lc(x12) = 1.0

Lc(x3) = 5.0 Lc(x4) = 1.0 Lc(x34) = −1.5

Lc(x13) = 2.0 Lc(x24) = −2.5
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Decoding Algorithm

1. Set prior information p(d̂) = 0.5 for all d L(d̂) = 0.

2. Sum the observed probability and prior probability

Lc(d#) + L(d#).

3. Decode horizontally. Obtain the bit probabilities based on the

constraint posed by the horisontal code. The result is called

horizontal extrinsic information.

- The parity bit is generated by the xor of information bits in

the horisontal line.

- The extrinsic information can be generated as the

aposteriori probability calculation accordingly to parity

check. For example

Lextrh (d1) = ln

(

p(d2 = 1)p(p1h = −1) + p(d2 = −1)p(p1h = 1)

p(d2 = −1)p(p1h = −1) + p(d2 = 1)p(p1h = 1)

)
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4. Set L(d̂1) = Lextrh (d1).

5. Combine the aposteriori horisontal and priori information for

each bit. For example for the bit 1

Lcombined(d1) = Lc(d1) + L(d̂1)

pc(d1 = 1) =
eL

combined(d1)

(

1 + eL
combined(d1)

)

6. Decode vertically. In computations instead of p use pc. Obtain

the vertical extrinsic information for each bit. For example

Lextrv (d1) = ln

(

pc(d3 = 1)p(p1v = −1) + pc(d3 = −1)p(p1v = 1)

pc(d3 = −1)p(p1v = −1) + pc(d3 = 1)p(p1v = 1)

)
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7. If the interations have not finished

- combine the information of the aposteriori vertical

Lextrh (d#) and priori information L(d#) for each bit.

- go back to stage 2.

else

- Combine all the information for the bit the priori

aposteriori vertical and horisontal.

Ld(d#) = Lc(d#) + Lextrv (d#) + Lextrh (d#)

- Compare the likelihood ratio of the bit with the decision

level (0).
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The soft output for the received signal corresponding to data di

L(d̂i) = Lc(xi) + L(d̂i) + Lextrh (d)

Decode horizontally

Lextrh (d1) = ln
(

p(d2=1)p(p1h=−1)+p(d2=−1)p(p1h=1)
p(d2=−1)p(p1h=−1)+p(d2=1)p(p1h=1)

)

= 0.74 = newL(d̂1)

Lextrh (d2) = +0.12 = newL(d̂2)

Lextrh (d3) = −0.60 = newL(d̂3)

Lextrh (d4) = −1.47 = newL(d̂4)
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+0.25 +2.0

+5.0 +1.0
+

+0.74 +0.12

−0.60 −1.47
after 1st horizontal decoding

Decode vertically

Lextrh (d2) = +0.33 = newL(d̂2)

Lextrh (d2) = +0.09 = newL(d̂2)

Lextrh (d3) = −0.36 = newL(d̂3)

Lextrh (d4) = −0.26 = newL(d̂4)

+0.33 +0.09

+0.36 −0.26
Extrinsic information after 1st vertical decoding

Soft output after 1st iteration L(d̂) = Lc(x) + Leh(d) + Lev(d)

+0.25 +2

+5.0 +1
+

+0.74 +0.12

−0.60 −1.47
+

+0.33 +0.09

+0.36 −0.26
=

+1.31 +2.20

+4.75 −0.74
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We can see an iterative process:

1 Decode first code and calculate extrinsic information for each

bit.

- In first iteration the information from other code is zero.

2 Decode the second code by using extinsic information from the

first decoder.

3 Return to the first step by using the extrinsic information from

the second decoder.
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Turbo Decoding

• Turbo codes are constructed by applying two or more

component codes to different interleaved versions of the same

information sequence.

• The idea of turbo decoding is to pass information from output

of one decoder to the input of the other decoder and to iterate

this process several times to produce better decision.

• Decoding algorithm should exchange soft decisions rather than

hard decisions.

• The optimal soft output should be the a posteriori probability

(APP), the probability of the received bits or sequence

conditioned on the received signal.
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Turbo Principle

Iterative exchange of soft information between different blocks in a

receiver nowadays is successfully applied (beyond channel coding)

for a wide range of communications problems:

• Combined equalization/estimation and error correction

decoding

• Iteratively improved synchronization

• Combined multiuser detection and error correction decoding

• (Spatial) diversity combining for coded systems in the presence

of multiple-access interference (MAI) or inter-symbol

interference (ISI)

⇒ Iterative Receiver Concept
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Turbo Equalization

ISI channel is the inner code in the serial concatenation.

ISI channel may be seen as a rate 1 code defined over the field of

real numbers

(Outer)

Convolutional


Encoder

Interleaver


ISI

Channel


Interleaver


Interleaver

(Outer)

SISO


Decoder


SISO

Equalizer


AP

P


Estimated

Data


Turbo Equalizer


n(t)

AWGN


Figure 4: Turbo equalisation.
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Turbo Multiuser Detection (1)

Multiple-access interference (MAI) channel is the inner code of a

serial concatenation

MAI channel may be seen as a time-varying ISI channel.

MAI channel is a rate 1 code with time-varying coefficients over the

field of real numbers.

The input to the MAI channel consists of the encoded and

interleaved sequences of all users in the system.
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Turbo Multiuser Detection (2)

Convolutional
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Figure 5: Turbo multi user detection.
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Soft Channel Outputs

• Let binary elements 0 and 1 present data d = 1 and d = −1.
• LLR of d conditioned on x = d+ n (data + noise)

L(d|x) = ln p(d = +1|x)
p(d = −1|x)

p(d = 1|x) is the conditional a posteriori probability (APP).
• Using Bayes theorem:

L(d|x) = ln p(x|d = +1)
p(x|d = −1) + ln

p(d = +1)

p(d = −1) = L(x|d) + L(d)

where L(x|d) is the LLR of channel measuremetns of x under
the alternate conditions d = ±1.

• Assuming AWGN with n ∈ N(0, σ2) the probability of the

matched filter output is

p(x|d = +1) = 1

σ
√
2π

e

(

−
Eb
2σ2 (x−a)2

)
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L(dk|xk) = ln

(

exp
(

−
Eb
2σ2 (xk−a)2

)

exp
(

−
Eb
2σ2 (xk+a)2

)

)

+ ln
p(dk = +1)

p(dk = −1)
=

((

− Eb
2σ2 (xk − a)2

)

−
(

− Eb
2σ2 (xk + a)2

))

+ ln
p(dk = +1)

p(dk = −1)
= Eb

2σ2 · 4a · xk + ln p(dk=+1)
p(dk=−1)

= Lc(xk) + L(dk)

where Lc(xk) =
2Eb
σ2 · 4a · xk,

for binary symmetric channel (BSC) Lc(xk) is channel LLR.
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SISO Decoder

L(d) Lextr(d)

Lc(x) L′(d̂)

Soft-in

Soft-out

decoder


feedback for the next iteration


a-prior

values in


extrinsic

values out


a-posteriori

values out


channel

values in


Soft decision L(d̂) is a real number: the sign of it gives the hard

decision and the magnitude denotes the reliability of that decision.

Decoder improves decision reliability: L′(d̂) = Lc(x) + L(d) + Le(d)
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Algorithms for Iterative (Turbo) Data Processing

Trellis-Based

Detection Algorithms


MAP

Algorithm


log-MAP


max-log-MAP


Viterbi

Algorithm


SOVA


Modified

SOVA


Sequence

detection


Symbol-by-symbol

detection


Requirements

Accept soft-inputs in the

form of a priori probabilities

or log-likelihood ratios

Produce APP for output data

Soft-Input Soft-Output

- MAP: Maximum A

Posteriori (symbol-by-

symbol)

- SOVA: Soft Output

Viterbi Algorithm
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Approximations
• The loglikelihood after equal operation

L ((d1 = d2)) = ln
(

e(L(d1)+L(d2))
)

= (L(d1) + L(d2))

• The loglikelihood after modulo 2 operation

L(d1 ⊕ d2) =
1 + exp(L(d1)) exp(L(d2))

exp(L(d1)) + exp(L(d2))

• We can simplify the equation by selecting only the minimum

L(d1 ⊕ d2) ≈ sign(L(d1)L(d2))min{|L(d1)|, |L(d2)|}

• The simplified version allows to calculate the output

probability by simple selection.

Define addition for LLR: L(d1)¢ L(d2) , L(d1 ⊕ d2)

with rules L(d)¢ 0 = 0, L(d)¢−∞ = −L(d)
• By induction

∑

i¢L(di) = L(
∑

i⊕di) ≈
∏

i sign(L(di))mini{|L(di)|}
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