
S-72.630 Algorithms for Turbo Decoding (5) 1'

&

$

%

Turbo decoding algorithms

Kalle Ruttik

Communications Laboratory

Helsinki University of Technology

P.O.Box 2300, FIN-02015 HUT, FINLAND

Tel: +358 9 451235418; Fax: +358 9 4512359

e-mail: kalle.ruttik@hut.fi

February 4, 2005

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 2'

&

$

%

Algorithms for Iterative (Turbo) Data Processing

Trellis-Based

Detection Algorithms

MAP

Algorithm

log-MAP

max-log-MAP

Viterbi

Algorithm

SOVA

Modified

SOVA

Sequence

detection

Symbol-by-symbol

detection

Requirements

Accept soft-inputs in the

form of a priori probabilities

or log-likelihood ratios

Produce APP for output data

Soft-Input Soft-Output

- MAP: Maximum A

Posteriori (symbol-

by-symbol)

- SOVA: Soft Output

Viterbi Algorithm

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 3

MAP decoding Algorithm
• The a posteriori estimation of the symbol is optimally

made by the BCJR algorithm (Bahl, Cocke, Jalinek, Raviv)

• BCJR is a forward-backward MAP algorithm. In Turbo

decoding purposes this algorithm is slightly modified.

• BCJR (MAP) algorithm finds the marginal probability

that the received bit was 1 or 0.

• Since the bit 1 (or 0) could occur in many different code

words, we have to sum over the probabilities of all these

code words.

• The decision is made by using the likelihood ratio of these

marginal distributions from 1 and 0.

• The calculation can be structured by using trellis diagram.

• For every state sequence there is a unique path trough the

trellis and vice versa.

• The objective of the decoder is to examine states s and

compute APPs associated with the state transitions.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 4

0/00

0/00

0/00

0/00

0/01

1/11

1/10

0/11

1/11

00

00

00

00

10

10

10

0/01

0/01

1/10

1/10

1/11

01

01

0/11

00

0/00

1/11

1/11

10

0/01

1/10

11

11

11

01

0/11

1/11

1/00

1/00

0/01

1/10

1/10

0/01

0/01

1/10

Figure 1: Calculation of

the marginal probability

in the code tree.

• The probability of the code

words is visualised in the code

tree.

• For independent bits the

probability of one codeword is

multiplication of probabilities

of the individual bits in the

codeword.

• The marginal probability from

the code tree for some particular

bit beeing 1 or 0 corresponds to

the sum of probabilities over all

the codewords where this bit is

1 or 0.

• The structured way to calcu-

lated the marginal probability

can be done on the trellis.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 5

Example of calculation of marginal probablities

We would like to calculate the marginal probability for c1 = 0.

ppost(c2 = 0) =

∑

c2=0
p(c1,c2,c3)

∑

c2=0
p(c1,c2,c3)+

∑

c2=1
p(c1,c2,c3)

Z
Z
Z
Z
Z
Z
ZZ~

HHHHHHHHj

»»»
»»»

»»:

³³
³³
³³
³³1

p(c1, c2, c3)

p(0, 0, 0)

p(0, 0, 1)

p(0, 1, 0)

p(0, 1, 1)

p(1, 0, 0)

p(1, 0, 1)

p(1, 1, 0)

p(1, 1, 1)

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 6

For the independent samples we can separate

ppost(c2 = 0) =

∑

c2=0
p(c1|c2)p(c2)p(c3|c1, c2)

∑

c2=0
p(c1|c2)p(c2)p(c3|c1, c2) +

∑

c2=1
p(c1|c2)p(c2)p(c3|c1, c2)

The likelihood ratio becomes

ppost(c2=0)
ppost(c2=1)

=

∑

c2=0
p(c1|c2)p(c2)p(c3|c1,c2))

∑

c2=1
p(c1|c2)p(c2)p(c3|c1,c2))

= p(c2=0)
p(c2=1)

·

∑

c2=0
p(c1|c2)p(c3|c1,c2))

∑

c2=1
p(c1|c2)p(c3|c1,c2))

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 7

Notation

sS
k (e)

sE
k (e)

e

dE
k (e), xE

k (e)

00

01

10

11

- e edge.

- ssk (e) starting stage of

the edge e.

- ssk (e) ending stage of the

edge e.

- dk (e) the information

word containing k0 bits.

- ui stands for individual

information bits.

- xk (e) codeword contain-

ing n0 bits.
In this notation sSk (e) = sEk (e)

We assume here that the received signal is yk = xk + n

(transmitted symbols + noise).

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 8

• The metric at time k is

Mk (e) = p
(
sEk (e) , yk|x

S
k (e)

)

=
∑

xk

p
(
sEk (e) |sSk (e)

)
p
(
xk|s

S
k (e)

)
p (yk|xk)

p
(
sEk (e) |sSk (e)

)
a-priori information of the

information bit.

p
(
xk|s

S
k (e)

)
indicating the existence of connection

between edges sEk (e) , sSk (e)

p (yk|xk) probability of receiving yk if xk was

transmitted

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 9

• Let Ak (·) and Bk (·) be forward and backward path

metrics.

Ak (s) = p
(
sEk (e) = s, yk1

)

=
∑

e:sE
k (e)=s

Ak−1 (s
s
k (e))Mk (e) , k = 1, . . . , N − 1

Bk (s) = p
(
yk1 |s

S
k+1 (e) = s,

)

=
∑

e:sE
k (e)=s

Bk+1

(
sSk+1 (e)

)
Mk+1 (e) , k = N − 1, . . . , 1

• Suppose the decoder starts and ends with known states.

A0 (s) =







1, s = S0

0, otherwise

BN (s) =







1, s = SN

0, otherwise

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 10

• If the final state of the trellis is unknown

BN (s) =
1

2m
, ∀s

• The joint probability at time k is

σk (e) = p
(
e, yN1

)

= Ak−1

(
sSk (e)

)
·Mk (e) ·Bk

(
sEk (e)

)

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 11

()
1
1 1M

()
1
1 2M

()
2
1 1M

()
2
1 2M

()
2
2 3M

()
2
2 4M

1

2

3

4

()
3
1 1M

()
3
1 2M

()
3
3 1M

()
3
3 2M

()
3
2 3M

()
3
2 4M

()
3
4 3M

()
3
4 4M

()
4
1 1M

()
4
1 2M

()
4
3 1M

()
4
3 2M

()
4
2 4M

()
4
4 3M

()
4
4 4M

()
7
4A

()
5
1 1M

()
5
3 1M

()
5
2 3M

()
5
4 3M

()
6
1 1M

()
6
1 2M

()
1
1A ()

2
1A ()

3
1A

()
2
2A

()
3
3A()

2
3A

()
1
2A

()
1
3A

()
1
4A ()

2
4A ()

3
4A ()

4
4A ()

5
4A ()

6
4A

()
4
1A ()

5
1A ()

6
1A ()

7
1A

()
7
2A

()
7
3A

Figure 2: Forward calculation of A(·).

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 12

()
1
1 1M

()
1
1 2M

()
2
1 1M

()
2
1 2M

()
2
2 3M

()
2
2 4M

1

2

3

4

()
3
1 1M

()
3
1 2M

()
3
3 1M

()
3
3 2M

()
3
2 3M

()
3
2 4M

()
3
4 3M

()
3
4 4M

()
4
1 1M

()
4
1 2M

()
4
3 1M

()
4
3 2M

()
4
2 4M

()
4
4 3M

()
4
4 4M

()
5
1 1M

()
5
3 1M

()
5
2 3M

()
5
4 3M

()
6
1 1M

()
6
1 2M

()
1
1B ()

2
1B ()

3
1B

()
2
2B

()
3
3B()

2
3B

()
1
2B

()
1
3B

()
1
4B ()

2
4B ()

3
4B ()

4
4B ()

5
4B ()

6
4B

()
4
1B ()

5
1B ()

6
1B ()

7
1B

()
7
2B

()
7
3B

()
7
4B

()
6
3B

()
6
2B

()
5
3B

()
5
2B

Figure 3: Backward calculation of B(·).

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 13

()
1
1 1M

()
1
1 2M

()
2
1 1M

()
2
1 2M

()
2
2 3M

()
2
2 4M

1

2

3

4

()
3
1 1M

()
3
1 2M

()
3
3 1M

()
3
3 2M
()

3
2 3M

()
3
2 4M

()
3
4 3M

()
3
4 4M

()
4
1 1M

()
4
1 2M

()
4
3 1M

()
4
3 2M

()
4
2 4M

()
4
4 3M

()
4
4 4M

()
7
4B

()
5
1 1M

()
5
3 1M

()
5
2 3M

()
5
4 3M

()
6
1 1M

()
6
1 2M

()
1
1A ()

2
1A ()

3
1A

()
2
2A

()
3
3A()

2
3A

()
1
2A

()
1
3A

()
1
4A ()

2
4A ()

3
4A ()

4
4A ()

5
4B ()

6
4B

()
4
1A ()

5
1B ()

6
1B ()

7
1B

()
7
2B

()
7
3B()

5
3B

()
5
2B

()
6
3B

()
6
2B()

4
2A

()
4
3A

()
4
2 3M

Figure 4: Caculation of the joint probability.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 14

The a-posteriori probability can be expressed as:

pAk (u) = p
(
uk = u|Y N

1

)

= 1

p(Y N
1)

∑

e:u(e)=u

σk (e)

= 1

p(Y N
1)

∑

e:u(e)=u

Ak−1

(
sSk (e)

)
·Mk (e) ·Bk

(
sEk (e)

)

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 15

()1 1 1M ()2 1 1M

()2 1 2M

()2 2 3M

()2 2 4M

1

2

3

4

()3 1 1M

()3 1 2M

()3 3 1M

()3 3 2M

()3 2 3M

()3 2 4M

()3 4 3M

()
3
4 4M

()
4
1 1M

()
4
1 2M

()
4
3 1M

()
4
3 2M

()
4
2 4M

()
4
4 3M

()
4
4 4M

()
7
4B

()
5
1 1M

()
5
3 1M

()
5
2 3M

()
5
4 3M

()
6
1 1M

()
6
1 2M

()
1
1A ()

2
1A ()

3
1A

()
2
2A

()
3
3A()

2
3A

()
1
2A

()
1
3A

()
1
4A ()

2
4A ()

3
4A ()

4
4A ()

5
4B ()

6
4B

()
4
1A ()

5
1B ()

6
1B ()

7
1B

()
7
2B

()
7
3B()

5
3B

()
5
2B

()
6
3B

()
6
2B()

4
2A

()
4
3A

()
4
2 3M

()1 1 2M

Figure 5: Caculation of the a-posteriori probability (APP).

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 16

Applying MAP algorithm to turbo codes

Encoder generates multiple encoded bit streams. These streams

can be generated on different interleaved bit sequences.

+

+

+

+

Interleaver

Figure 6: Example of a parallel concated convolutional codes

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 17

Iterative turbo decoding principle (PCCC)

The Transition probability in the trellis can be expressed by the bit

probability from the other decoder and by the observed probability

at the channel.

Mk (e) = C · e(ukL(uk)/2 · exp

(

Lc

2

n∑

l=1

yklxyl

)

One of the received bits corresponds to the systematic bits that is

common for both coders.

Mk (e) =C·e(ukL(uk)/2) · exp
(
Lc

2 ykduk
)
· exp



Lc

2

n∑

l=1
l 6=1

yklxyl





=C·e(ukL(uk)/2) · exp
(
Lc

2 ykduk
)
· Le1

Where d is the index of the systematic bit in the codeword section k.

We assume that each section contains only one systematic bit.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 18

The loglikelihood ratio of the estimated bit is the division of the

probablity that uk = 1 to probability that the bit was uk = 0.

L
(
uk|Y

N
1

)
= ln

p(uk=0|Y
N
1)

p(uk=1|Y N
1)

=

∑

e:u(e)=0

σk(e)

∑

e:u(e)=1

σk(e)

= ln

∑

e:u(e)=0

Ak−1(sS
k (e))·Mk(e)·Bk(sE

k (e))
∑

e:u(e)=1

Ak−1(sS
k (e))·Mk(e)·Bk(sE

k (e))

= ln

∑

e:u(e)=1
(mapped to −1)

Ak−1(sS
k (e))·e

L(uk)/2·eLcyks/2·e(
Lc
2

ykduk)·Bk(sE
k (e))

∑

e:u(e)=1
(mapped to −1)

Ak−1(sS
k (e))·e−L(uk)/2·e−Lcyks/2·e(

Lc
2

ykduk)·Bk(sE
k (e))

= L(uk) + Lcyks + Le1(uk)

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 19

L(uk) a-priori information.

Lcyks loglikelihood of the systematic bit.

Le1(uk) extrinsic information calculated for given decoder it

describe information derived by imposing constraints of

given code.

L
(
uk|Y

N
1

)
describes a posteriori information at the output of

given decoder.

To the other decoder (for example to decoder 2) is given only

extrinsic information (from decoder 1). That describes information

derived from the other component code (code 1) and not othervise

available to the next decoder (decoder 2).

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 20

Parallel concated convolutional codes (PCCC)

I n t e r l e a v e r

p

E n c o d e r

1

t o c h a n n e l

E n c o d e r

2

Figure 7: Encoder

S I S O

1 I n t e r l e a v e r

p

1p -

S I S O

2

F r o m d e m o d n o t u s e d n o t u s e d
F r o m

d e m o d

d e c i s i o n

Figure 8: Decoder

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 21

Serial concated convolutional codes (SCCC)

I n t e r l e a v e r

p

O u t e r

E n c o d e r 1

t o c h a n n e lI n n e r

E n c o d e r 2

Figure 9: Encoder

S I S O

1 S I S O

2

F r o m d e m o d n o t u s e d

d e c i s i o n

I n t e r l e a v e r

p

1p -

0

Figure 10: Decoder

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 22

Parallel concated convolutional codes (PCCC)

- Encoder contains by two or more systematic convolutional

encoders

- The constituent encoders code the same data stream that

for different encoders are interleaved

- The systematic bits are transmitted only once

- In reciever the extrinsic information is calculated for the

information bit and feed to the other code decoder

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 23

Serial concated convolutional codes (SCCC)

- Code is formed by concatenating two encoders

- The output coded bit stream from the outer encoder is

interleaved and feed to the inner encoder

- The decoder

- Calculates the loglikelihoods of information bits at the

output of the inner decoder and deinterleaver them

- The outer decode is decoded and loglikelihoods for the

coded bits are calculated

- The coded bits loglikelihoods are interleaved and feed

back to the inner decoder

- The decision are made after the decoding iterations on

the loglikelihoods of the information bits at the output of

the outer decoder

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 24

Algorithms for Iterative (Turbo) Data Processing

Trellis-Based

Detection Algorithms

MAP

Algorithm

log-MAP

max-log-MAP

Viterbi

Algorithm

SOVA

Modified

SOVA

Sequence

detection

Symbol-by-symbol

detection

Requirements

Accept soft-inputs in the

form of a priori probabilities

or log-likelihood ratios

Produce APP for output data

Soft-Input Soft-Output

- MAP: Maximum A

Posteriori (symbol-

by-symbol)

- SOVA: Soft Output

Viterbi Algorithm

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 25

Modification of MAP algorithm

· MAP algorithm operates in probability domain.

pAk (u) = 1

p(Y N
1)

∑

e:u(e)=u

Ak−1

(
sSk (e)

)
·Mk (e) ·Bk

(
sEk (e)

)

· When probablity is expressed by loglikelihood value we

have to deal with numbers in very large range. (overflows

in computers).

Simplification Log-MAP algorithm description

• Log-MAP algorithm is a transformation of MAP into

logarithmic deomain.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 26

• The MAP algorithm logarithmic domain is expressed with

replaced computations

- Multiplication is converted to addition.

- Addition is converted to a max ∗ (·) operation.

max∗ (x, y) = log (ex + ey) = max (x, y)+ log
(

1 + e−|x−y|
)

• The terms for calculating the probabilities in trellis are

converted

αk (s) = logAk (s)

βk (s) = logBk (s)

γk (s) = logMk (e)

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 27

• The complete logMAP algortihm is

λAk (u) = log
∑

e:u(e)=1

Ak−1

(
sSk (e)

)
·Mk (e) ·Bk

(
sEk (e)

)

− log
∑

e:u(e)=0

Ak−1

(
sSk (e)

)
·Mk (e) ·Bk

(
sEk (e)

)

= max ∗
e:u(e)=1

(
αk−1

(
sSk (e)

)
+ γk (e) + βk

(
sEk (e)

))

− max ∗
e:u(e)=0

(
αk−1

(
sSk (e)

)
+ γk (e) + βk

(
sEk (e)

))

αk (s) = log
∑

e:sE
k (e)=s

Ak

(
sSk (e)

)
·Mk (e)

βk (s) = log
∑

e:sS
k+1(e)=s

Bk+1

(
sSk+1 (e)

)
·Mk+1 (e)

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 28

Max-Log-MAP decoding Algorithm

• In summation of probabilities in Log-MAP algorithm we

are using max ∗ (·) operation.

• The max ∗ (·) requires to convert LLR value into

exponential and after adding 1 to move back into log

domain.

• Simplifications

- We can replace log
(
1 + e−|x−y|

)
by a lookup table.

- We can skip the term Max-Log-Map.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 29

αn(s) = log(An) = log(
∑

sk
[An−1(s

S
k)Mn(e)]

= log(
∑

sk
exp[αn−1(sk) + γn(sk, s

′
k)])

= max ∗ (
∑

sk
exp[αn−1(sk) + γn(sk, s

′
k)])

≈ max(αn−1(sk) + γn(sk, s
′
k)) ⇒ Max-Log-MAP

βn−1(s) = log(Bn) = log(
∑

sk
[Bn(s

S
k)Mn(e)]

= log(
∑

sk
exp[βn(sk) + γn(sk, s

′
k)])

= max ∗ (
∑

sk
exp[βn(sk) + γn(sk, s

′
k)])

≈ max(βn(sk) + γn(sk, s
′
k)) ⇒ Max-Log-MAP

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 30

Log-MAP Algorithm (Forward Recursion 1)

00

01

10

11

a0(0)=0.0
 a1(0)=-0.5

a1(2)=-0.3

g1(00)=-0.5

g1(02)=-0.3

g2(02)=-5.0

g2(23)=-2.3

g2(00)=-2.3

g2(21)=-1.2

a2(0)=-2.8

a2(0)=-1.5

a2(2)=-5.5

a2(3)=-2.6

αn+1(s
′

k) = log(
∑

sk
exp[αn(sk) + γn+1(sk, s

′

k)])

log(exp[x] + exp[y]) ≈ max(x, y) + log(1 + exp[−|x− y])
︸ ︷︷ ︸

tab∆

= max∗(x, y)

α1(s1) = log(exp[α0(s0) + γ1(s0, s1)])⇒ log(exp[0.0 + (−0.3)]) = −0.3

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 31

00

01

10

11

a0(0)=0.0
 a1(0)=-0.5

a1(2)=-0.3

g1(00)=-0.5

g1(02)=-0.3

g2(02)=-5.0

g2(23)=-2.3

g2(00)=-2.3

g2(21)=-1.2

a2(0)=-2.8

a2(0)=-1.5

a2(2)=-5.5

a2(3)=-2.6

a3(0)=-6.4

a3(0)=-3.4

a3(2)=-4.2

a3(3)=-3.7

g3(00)=-6.6

g3(02)=-6.0

g3(21)=-2.4

g3(23)=-2.5

g3(10)=-5.0

g3(12)=-2.7

g3(33)=-1.2

g3(31)=-0.8

αn+1(s
′
k) = log(

∑

sk
exp[αn(sk) + γn+1(sk, s

′
k)])

α3(s2) = log
(
e(α2(s0)+γ3(s0,s2)) + e(α2(s1)+γ3(s1,s2))

)

⇒ ln
(
e(−2.8−6.0) + e(−1.5−2.7)

)
≈ max ∗(−8.8,−6.5) = −6.4

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 32

Max-Log-MAP approximation

00

01

10

11

a0(0)=0.0
 a1(0)=-0.5

a1(2)=-0.3

g1(00)=-0.5

g1(02)=-0.3

g2(02)=-5.0

g2(23)=-2.3

g2(00)=-2.3

g2(21)=-1.2

a2(0)=-2.8

a2(0)=-1.5

a2(2)=-5.5

a2(3)=-2.6

a3(0)=-6.5

a3(0)=-3.4

a3(2)=-6.5

a3(3)=-3.8

g3(00)=-6.6

g3(02)=-6.0

g3(21)=-2.4

g3(23)=-2.5

g3(10)=-5.0

g3(12)=-2.7

g3(33)=-1.2

g3(31)=-0.8

αn+1(s
′
k) = log(

∑

sk
exp[αn(sk) + γn+1(sk, s

′
k)])

α3(s2) = log
(
e(α2(s0)+γ3(s0,s2)) + e(α2(s1)+γ3(s1,s2))

)

≈ max
(
e(−2.8−6.0) + e(−1.5−2.7)

)
= max(−8.8,−6.5) = −6.5

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 33

Soft-output Viterbi algorithm

• Two modifications compared to the classical Viterbi

algorithm

- The path metric is modified to acoount the extrinsic

information. This is similar to the metric calculation

in Max-Log-MAP algorithm.

- The algorithm is modified to calculate the soft bit.

Figure 5.16 - 5.17 from the book.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 34

SOVA

• For each state in the trellis the metric M (ssk) is calculated

for both merging paths.

• The path with the highest metric is selected to be the

survivor.

• For the state (at this stage) a pointer to the previous state

along the surviving path is stored.

• The information to give L
(
uk| y

)
is stored.

- The difference ∆s
k between the discarded and

surviving path.

- The binary vector containing δ + 1 bits, indicating

last δ + 1 bits that generated the discarded path.

• After ML path is found the update sequences and metric

differences are used to calculate L
(
uk| y

)
.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 35

Calculation of L
(
uk| y

)
.

- For each bit uML
k in the ML path we try to find the path

merging with ML path that had compared to the uML
k in

ML different bit value uk at state k and this path should

have minimal distance with ML path.

- We go trough δ + 1 merging paths that follow stage k i.e.

the ∆si
i i = k...(k + δ)

- For each merging path in that set we calculate back to find

out which value of the bit uk generated this path.

- If the bit uk in this path is not uML
k and ∆si

i is less than

current ∆min
k we set ∆min

k =∆si
i

- L
(
uk| y

)
≈ uk min

i=k...k+σ
uML

k 6=ui
k

∆si
i

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 36

Comparison of the computing principles

MAP

• The MAP algorithm is the optimal component decoder

algorithm.

• It finds the probability of each bit uk of either being a +1

or -1 by summing the probabilities of all the codewords

where the given bit is +1 and where the bit is -1.

• Extremely complex.

• Because of the exponent is probability calculations in

pracitce the MAP algrithm often suffers of numerical

problems.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 37

LogMAP

• LogMAP theorectically identical to MAP the calculation

only are made in logarithmic domain.

• Multiplications are replaced with addition and summation

with max ∗(·) operation.

• Numerical problems that occure in MAP are

cirmcumvented.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 38

Max-Log-MAP

• Similar to LogMAP but replaces the maxlog operation

(max ∗(·)) with taking maximum.

• Because at each state in forward and backward calcualtions

only the path with maximum value is considered the

probabilities are not calculated over all the codewords.

- In recursive calculation of α and β also only the best

transition is considered.

- The algorithm gives the logarithm of the probability that

only the most likely path reaches the state.

• In the MaxLogMAP L
(
uk| y

)
is comparison of probability

of most likely path giving uk = −1 to the most likely path

giving uk = +1.

- In calcualtions of loglikelihood ratio only two codewords

are considered (two transitions): The best transition that

would give +1 and the best transition that would give -1.

• MaxLogMAP performs worse than MAP or LogMAP

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 39

SOVA

• SOVA the ML path is found.

- The recursion used is identical to the one used for

calcuating of α in MaxLogMAP algorithm.

• Along the ML path hard decision on the bit uk is made.

• L
(
uk| y

)
is the minimum metric difference between the ML

path and the path that merges with ML path and is

generated with different bit value uk.

- In L
(
uk| y

)
calcualtions accordingly to MaxLogMAP

one path is ML path and other is the most likely path

that gives the different uk.

- In SOVA the difference is calculated between the ML

and the most likely path that merges with ML path and

gives different uk.

This path but the other may not be the most likely one

for giving different uk.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 40

• The output of SOVA just more noisy compared to

MaxlogMAP output (SOVA does not have bias).

• The SOVA and MaxLogMAP have the same output

- The magnitude of the soft decisions of SOVA will either

be identical of higher than those of MaxLogMAP.

- If the most likely path that gives the different hard

decision for uk has survived and merges with ML path

the two algorithms are identical.

- If that path does not survive the path on what different

uk is made is less likely than the path which should have

been used.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 41

Table 1: Comparison of complexity of different decoding algorithms

Operations maxlogMAP logMAP Sova

max-ops 5× 2M − 2 5× 2M − 2 3 (M + 1) + 2M

additions 10× 2M + 11 10× 2M + 11 2× 2M + 8

mult. by ±1 8 8 8

bit comps 6 (M + 1)

look-ups 5× 2M − 2

M is the length of the code memory.

Table accordingly to reference [1]

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 42

If to assume that each operation is comparable we can calculate the

totat amount of operations per bit every algorithm demands for

decoding one code in one iteration.

Table 2: Number of reguired operations per bit for different decoding

algorithms

memory (M) MaxLogMAP LogMAP Sova

2 77 95 55

3 137 175 76

4 257 335 109

5 497 655 166

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 43

Performance of the Turbo Decoding algorithms

• Component decoding algorithms.

• Number of iterations used.

• Frame length impact to performance.

• Interleavers.

• Channel reliability values

Figures from the book pages 150 - 171.

Kalle Ruttik 2005

S-72.630 Algorithms for Turbo Decoding (5) 44

References

1 P. Robertson, E. Villebrun, P. Hoeher, ”Comparison of

Optimal and Suboptimal MAP decoding algorithms”, ICC,

1995 page 1009-1013.

Kalle Ruttik 2005

