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Classical detection and estimation theory. 
What is detection? 
• Signal detection and estimation is the area of study that deals with 

the processing of information-bearing signals for the purpose of 
extracting information from them. 

 
 
 
 
 
     A simple digital communication system.
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Components of a decision theory problem. 
1. Source - that generates an 

output. 
2. Probabilistic transition 

mechanism - a device that 
knows which hypothesis is 
true. It generates a point 
in the observation space 
accordingly to some 
probability law. 

3. Observation space – describes all the outcomes of the transition 
mechanism. 

4. Decision  - to each point in observation space is assigned one of the 
hypotheses 
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 Components of a decision theory problem. 



Example: 

• When 1H  is true the source 
generates +1. 

• When 0H  is true the source 
generates -1.  

• An independent discrete random 
variable n whose probability 
density is added to the source 
output. 

1
2

1
4

1
4

N0-1 +1

pn(N)

1
2

1
4

1
4

N+10 +2

pn(N H1)

1
2

1
4

1
4

N-1-2 0

pn(N H0)

 

Source

H1

H0
+1

-1

Transition
mechanism

Observation
space

r

 



• The sum of the source output and n is observed variable r. 
• Observation space has finite dimension, i.e. observation consists of a 

set of N numbers and can be represented as a point in N dimensional 
space. 

• Under the two hypotheses, we have 
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• After observing the outcome in the observation space we shall guess 
which hypothesis is true. 

• We use a decision rule that assigns each point to one of the 
hypotheses. 



• Detection and estimation applications involve making inferences from 
observations that are distorted or corrupted in some unknown 
manner. 



Simple binary hypothesis testing. 
• The decision problem in which each of two source outputs 

corresponds to a hypothesis.  
• Each hypothesis maps into a point in the observation space.  
• We assume that the observation space is a set of N observations: 

1 2, , ,
N

r r r… . 
• Each set can be represented as a vector r: 
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• The probabilistic transition mechanism generates points in accord 
with the two known conditional densities ( )
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• The objective is to use this information to develop a decision rule. 



Decision criteria. 
• In the binary hypothesis problem either 0H  or 1H  is true. 
• We are seeking decision rules for making a choice.  
• Each time the experiment is conducted one of four things can happen: 

1. 0H  true; choose 0H → correct 
2. 0H  true; choose 1H  
3. 1H  true; choose 1H → correct 
4. 1H  true; choose 0H  

• The purpose of a decision criterion is to attach some relative 
importance to the four possible courses of action.  

• The method for processing the received data depends on the decision 
criterion we select. 



Bayesian criterion. 
Source generates two outputs 
with given (a priori) 
probabilities 1 0,P P . These 
represent the observer 
information before the 
experiment is conducted. 

• The cost is assigned to each course of actions. 00 10 01 11, , ,C C C C . 
• Each time the experiment is conducted a certain cost will be incurred. 
• The decision rule is designed so that on the average the cost will be 

as small as possible.  
• Two probabilities are averaged over: the a priori probability and 

probability that a particular course of action will be taken.  
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• The expected value of the cost is 
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• The binary observation rule divides the total observation space Z  
into two parts: 0 1,Z Z . 

• Each point in observation space is assigned to one of these sets. 
• The expression of the risk in terms of transition probabilities and the 

decision regions: 
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• 0 1,Z Z  cover the observation space (the integrals integrate to one).  
• We assume that the cost of a wrong decision is higher than the cost 

of a correct decision. 
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• For Bayesian test the regions 0Z  and 1Z  are chosen such that the risk 
will be minimized. 



• We assume that the decision is to be made for each point in 
observation space. ( )0 1Z Z Z= +  

• The decision regions are defined by the statement:  
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 Observing that 
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• The integral represents the cost controlled by those points R  that we 
assign to 0Z . 

• The value of R  where the second term is larger than the first 
contribute to the negative amount to the integral and should be 
included in 0Z .  

• The value of R  where two terms are equal has no effect.  
• The decision regions are defined by the statement: 
 If ( ) ( ) ( ) ( )

1 0
1 01 11 1 0 10 11 0r| r|

R | R |
H H

P C C p H P C C p H− ≥ − , 

assign R  to 1Z  and say that 1H  is true. Otherwise assign R  to 0Z  
and say that 0H  is true.  



• This may be expressed as: 
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• Regardless of the dimension of R , ( )Λ R  is one-dimensional variable. 
• Data processing is involved in computing ( )RΛ  and is not affected by 

the prior probabilities and cost assignments. 
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 is the threshold of the test. 



• The η  can be left as a variable threshold and may be changed if our a 
priori knowledge or costs are changed. 

• Bayes criterion has led us to a Likelihood Ratio Test (LRT)  
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Summary of the Bayesian test: 
• The Bayesian test can be conducted simply by calculating the 

likelihood ratio ( )RΛ  and comparing it to the threshold. 
Test design: 
• Assign a-priori probabilities to the source outputs. 
• Assign costs for each action. 
• Assume distribution for ( )
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• calculate and simplify the ( )RΛ  
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Special case.  

00 11 0C C= =   01 10 1C C= =  
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• When the two hypotheses are equally likely, the threshold is zero. 
 
 



Sufficient statistics. 

• Sufficient statistics is a function T  that transfers the initial data set 

to the new data set ( )T R  that still contains all necessary information 

contained in R  regarding the problem under investigation.  

• The set that contains a minimal amount of elements is called minimal 

sufficient statistics.  

• When making a decision knowing the value of the sufficient statistic 

is just as good as knowing R . 



The integrals in the Bayes test.  
False alarm: 
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Special case: the prior probabilities unknown. 
Minimax test. 
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• If the regions 0Z  and 1Z  fixed the integrals are determined.  
 ( ) ( )( )0 10 1 11 1 01 11 0 10 00 1M FPC PC P C C P P C C P= + + − − − −R  
 0 11P P= −  
• The Bayesian risk will be function of 1P . 
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• Bayesian test can be found if all the costs and a priori probabilities 
are known.  

• If we know all the probabilities we can calculate the Bayesian cost. 

• Assume that we do not know 1P  and just assume a certain one *
1P  

and design a corresponding test. 

• If 1P  changes the regions 0 1,Z Z  changes and with these also FP  and 

DP . 
 



• The test is designed for *
1P  but the actual a priori probability is 1P .  

• By assuming *
1P  we fix FP and DP .  

• Cost for different 1P  is given by a 
function ( )*

1 1,P PR . 

• Because the threshold η  is fixed the cost 
( )*

1 1,P PR  is a linear function of *
1P . 

• Bayesian test minimizes the risk for *
1P . 

For other values of 1P   
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• ( )1PR  is strictly concave. (If ( )RΛ  is a 
continuos random variable with strictly 
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A function of 1P  if *
1P  is fixed



monotonic probability distribution function, the change of η  always 
change the risk.) 

Minimax test. 
• The Bayesian test designed to minimize the maximum possible risk is 

called a minimax test.  
• 1P  is chosen to maximize our risk ( )*

1 1,P PR .  

• To minimize the maximum risk we select the *
1P  for which ( )1PR  is 

maximum. 
• If the maximum occurs inside the interval [ ]0,1 , the ( )*

1 1,P PR will 
become a horizontal line. Coefficient of 1P  must be zero. 

• ( ) ( ) ( )11 00 01 11 10 00 0M FC C C C P C C P− + − − − =  This equation is 
the minimax equation.  
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Special case. 
Cost function is  

00 11 0C C= =  

01 10,M FC C C C= = . 
The risk is  

( ) ( )1 1 0 1F F M M F F F F M MP C P P C P C P PC P PC P= + − = +R . 
The minimax equation is  

M M F FC P C P= . 



Neyman-Pearson test. 
• Often it is difficult to assign realistic costs of a priori probabilities. 

This can be bypassed if to work with the conditional probabilities FP  
and DP . 

• We have two conflicting objectives to make FP  as small as possible 
and DP  as large as possible. 

 
Neyman-Pearson criterion.  
Constrain 'FP α α= ≤  and design a test to maximize DP  (or minimize 

MP ) under this constraint. 
• The solution can be obtained by using Lagrange multipliers.  
 'M FF P Pλ α = + −  
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• If  FP α= , minimizing F  minimizes MP . 
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• For any positive value of λ an LRT will minimize F. 
• F is minimized if we assign a point R to 0Z  only when the term in the 

bracket is negative. 
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• F is minimized by the likelihood ratio test. ( )
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• To satisfy the constraint λ is selected so that 'FP α= . 

 ( )
0

0|
| 'F H

P p H d
λ

α
∞

Λ
= Λ Λ =∫   

• Value of λ will be nonnegative because ( )
0

0|
|

H
p H
Λ

Λ  will be zero for 
negative values of λ.  

 
( )

0| 0l Hp X H ( )
1| 1l Hp X H

L

( )
0| 0l Hp X H ( )

1| 1l Hp X H

L
 



Example. 
We assume that under 1H  the source output is a constant voltage m . 
Under 0H  the sourse output is zero. Voltage is corrupted by an additive 
noise. The out put is sampled with N  samples for each second. Each 
noise sample is a i.i.d. zero mean Gaussian random variable with 
variance 2σ . 

1

0

: , 1, 2, ,

: , 1, 2, ,
i i

i i

H r m n i N

H r n i N

= + =

= =

…

…
 

( )
2

2

1 exp
2 2in

Xp X
πσ σ

 = −   
 

The probability density of ir  under each hypothesis is: 



( ) ( ) ( )
1

2

21|

1| exp
2 2ii

i
ni ir H

R m
p R H p R m

πσ σ

 −  = − = −    
 

( ) ( ) ( )
0

2

20|

1| exp
2 2ii

i
ni ir H

R
p R H p R

πσ σ

  = = −    
 

• The joint probability of N  samples is: 
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• The likelihood ratio is 
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• After cancelling common terms and taking logarithm: 

 ( )
2

2 2
1

ln .
2

N

i
i

m NmR
σ σ=

Λ = −∑R  

• Likelihood ratio test is: 
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 for normalisation.  
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• Under 0H  l  is obtained by adding N  independent zero mean 

Gaussian variables with variance 2σ  and then dividing by Nσ . 

Therefore l  is ( )0,1N . 



• Under 1H  l  is ,1NmN
σ
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Nmd
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 is the distance between the means of the two 

densities. 



( )

( )

( )

( )

2

log / /2

2

log / /2

1 exp
2 2

1 logexp
2 2 2

D
d d

d d

x d
P dx

y ddy erfc
d

η

η

η

∞

+

∞

−

 −  = −   

    = − = −      

∫

∫
 

• In the communication systems a special case is important 

 ( )
0 1Pr F MP P PPε + . 

• If 0 1P P=  the threshold is one and ( ) ( )1
2Pr F MP Pε + .



Receiver Operating Characteristics (ROC). 

• For a Neyman-Pearson test the values of FP  and DP  completely 
specify the test performance. 

• DP  depends on FP . The function of ( )D FP P  is defined as the Receiver 
Operating Characteristic (ROC). 

• The Receiver Operating Characteristic (ROC) completely describes 
the performance of the test as a function of the parameters of 
interest.  

 
 
 
 



Example. 



 
Properties of ROC. 
• All continuous likelihood tests have ROC’s that are concave 

downward. 
• All continuous likelihood ratio tests have ROC’s that are above the 

D FP P= . 
• The slope of a curve in a ROC at a particular point is equal to the 

value of the threshold η  required to achieve the FP  and DP  at that 
point 



Whenever the maximum value of the Bayes risk is interior to the 
interval (0,1) of the P1 axis the minimax operating point is the 
intersection of the line  

( ) ( )( ) ( )11 00 01 11 10 001 0D FC C C C P C C P− + − − − − =  
and the appropriate curve on the ROC.  
 



  Determination of minimax operating point.



Conclusions. 
• Using either the Bayes criterion of a Neyman-Pearson criterion, we 

find that the optimum test is a likelihood ratio test. 
• Regardless of the dimension of the observation space the optimum 

test consist of comparing a scalar variable ( )Λ R  with the threshold.  
• For the binary hypothesis test the decision space is one dimensional. 
• The test can be simplified by calculating the sufficient statistics. 
• A complete description of the LRT performance was obtained by 

plotting the conditioning probabilities DP  and FP  as the threshold η  
was varied.  



M Hypotheses. 
• We choose one of M hypotheses 
• There are M source outputs each of which corresponds to one of M 

hypotheses. 
• We are forsed to make decisions. 
• There are 2M  alternatives that may occur each time the experiment 

is conducted.  
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Bayes Criterion. 

ijC cost of each course of actions. 

iZ  region in observation space where we chose iH  

iP  a priori probabilities. 
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R is minimized through selecting iZ . 
 



Example M = 3. 
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• R is minimized if we assign each R  to the region in which the value 
of the integrand is the smallest. 

• Label the integrals ( ) ( ) ( )0 1 2, ,I I IR R R . 



 ( ) ( ) ( )0 1 2 0 and , chooseI I I H<R R R  
 ( ) ( ) ( )1 0 2 1 and , chooseI I I H<R R R  
 ( ) ( ) ( )2 0 1 2 and , chooseI I I H<R R R  

• If we use likelihood ratios  
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The set of decision equations is: 
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• M  hypotheses always lead to a decision space that has, at most, 
1M −  dimensions. 
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Special case. (often in communication) 
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1,ijC i j= ≠  
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• Compute the posterior probabilities and choose the largest. 
• Maximum a posteriori probability computer. 



Special case.  
Degeneration of hypothesis. 
What happens if to combine 1H  and 2H : 

12 21 0C C= = . 
For simplicity 

01 10 20 02C C C C= = =  

00 11 22 0C C C= = =  
First two equations of the test reduce to  

( ) ( )
1 2

0

or

1 1 2 2 0

H H

H
P P PΛ + ΛR R ≶  

 

1 2or H H

0H

( )2Λ R

( )1Λ R
 



Dummy hypothesis. 
• Actual problem has two hypothesis 1H  and 2H . 
• We introduce a new one 0H  with a priori probability 0 0P =  
• Let 
 1 2 1P P+ =  and 12 02 21 01,C C C C= =  

• We always choose 1H  or 2H . The test reduces to: 

( ) ( ) ( ) ( )
2

1

2 12 22 2 1 21 11 1

H

H
P C C P C C− Λ − ΛR R≶  

• Useful if 
( )
( )

2

1

2|

1|

|

|
H

H

p H

p H
r

r

R

R
 difficult to work with but ( )1Λ R , ( )2Λ R  are 

simple. 



Conclusions. 
1. The minimum dimension of the decision space is no more that 

1M − . The boundaries of the decision regions are hyperplanes in the 
( )1 1, , m−Λ Λ…  plane. 
2. The test is simple to find but error probabilities are often difficult to 
compute. 
3. An important test is the minimum total probability of error test. 
Here we compute the a posteriori probability of each test and choose 
the largest. 
 


