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Classical detection and estimation theory.

What is detection?

e Signal detection and estimation is the area of study that deals with
the processing of information-bearing signals for the purpose of
extracting information from them.

Digital Signal
‘ Source }Squw’ Transmitter W’{ Channel }—>

1 0 sinw,t sinw,t

) 1(t) =s(t)+n(?)

A simple digital communication system.

Components of a decision theory problem.
1.Source - that generates an
H, — output.
souree i e —‘@3&‘“’" 2.Probabilistic transition
mechanism - a device that
‘ knows which hypothesis is
true. It generates a point
Components of a decision theory problem. in the observation space
accordingly to some
probability law.

3.0bservation space — describes all the outcomes of the transition
mechanism.

4.Decision - to each point in observation space is assigned one of the
hypotheses
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e The sum of the source output and n is observed variable r.

e Observation space has finite dimension, i.e. observation consists of a
set of N numbers and can be represented as a point in N dimensional
space.

e Under the two hypotheses, we have
H :r=1+4+n

1

H :r=-1+n
o After observing the outcome in the observation space we shall guess

which hypothesis is true.

e We use a decision rule that assigns each point to one of the
hypotheses.

e Detection and estimation applications involve making inferences from
observations that are distorted or corrupted in some unknown
manner.

Simple binary hypothesis testing.

e The decision problem in which each of two source outputs
corresponds to a hypothesis.

e Each hypothesis maps into a point in the observation space.

e We assume that the observation space is a set of N observations:
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e Each set can be represented as a vector r:

n

r
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e The probabilistic transition mechanism generates points in accord
with the two known conditional densities p,_ " (R | H1>, P, (R | H 0).

e The objective is to use this information to develop a decision rule.




Decision criteria.

e In the binary hypothesis problem either H or H is true.

e We are seeking decision rules for making a choice.

e Each time the experiment is conducted one of four things can happen:

1. H true; choose H ,— correct
2.H, true; choose H,
3.H, true; choose H — correct
4.H, true; choose H

e The purpose of a decision criterion is to attach some relative
importance to the four possible courses of action.

e The method for processing the received data depends on the decision
criterion we select.

Bayesian criterion.

sap,  dource generates two outputs
with given (a priori)
probabilities P, P . These
represent the observer

7 opsenatonspace11fOTMAtion before the
paml(BlH) sy experiment is conducted.

e The cost is assigned to each course of actions. C,C,,C,,C,.

e Each time the experiment is conducted a certain cost will be incurred.

Pmﬂ(R ‘HJ

Source

e The decision rule is designed so that on the average the cost will be
as small as possible.

e T'wo probabilities are averaged over: the a priori probability and
probability that a particular course of action will be taken.

e The expected value of the cost is
R=C,F, Pr( say H | H, is true)
+C P, Pr< say H | H, is true)
+C P Pr< say H | H, is true)
+C,, P, Pr( say H, | H, is true)
e The binary observation rule divides the total observation space Z
into two parts: Z, Z,.
e Each point in observation space is assigned to one of these sets.

e The expression of the risk in terms of transition probabilities and the
decision regions:

R= OOO'POfpr\HO (R | Ho)dR+ Clopofpr|HU <R | Ho>dR
z, z,

1171

+C, P, [ »,, (RIH)R+C,P [p, (R]H)dR
A Z,

e 7,7, cover the observation space (the integrals integrate to one).

o We assume that the cost of a wrong decision is higher than the cost
of a correct decision.

c,>C

00

C()l > CYll

e For Bayesian test the regions Zo and Z are chosen such that the risk
will be minimized.




e We assume that the decision is to be made for each point in
observation space. (Z =Z,+ Z1>

e The decision regions are defined by the statement:

R= COO'ZDOfpr\HU <R | Ho)dR + 00 f Py, (R | H0>dR
Z, 7-z,

+011P1 f pr\H1 (R | H1>dR + COl‘Plf pr\Hl (R | H1>dR
7-2, Z

Observing that !
j‘pr\HO (RlHo)dR:fpr‘Hl (R|Hl)dR:1
Z Z

PI(COI _Cu)pr\H (R ’ Hl)
R=PC + PC |
ot Bt 1 g 6, ol (m11)

e The integral represents the cost controlled by those points R that we
assign to Z,.

e The value of R where the second term is larger than the first
contribute to the negative amount to the integral and should be
included in Z .

e The value of R where two terms are equal has no effect.
e The decision regions are defined by the statement:
If Pl <C o Cu>pr|Hl (R | Hl) = P() (Cw B Cll)pr\hrO (R | Ho)’

assign R to Z and say that H | is true. Otherwise assign R to Z
and say that H is true.

01

e This may be expressed as:

pr\Hl (R | Hl) 2 Po (Cw T Coo)

pr\HU (R | I-"To)?l B (Cm _011)

Dy (RIH,)
Py (RIH,)

is called likelihood ratio.

e Regardless of the dimension of R, A (R) is one-dimensional variable.

e Data processing is involved in computing A (R) and is not affected by

the prior probabilities and cost assignments.

B (Clo B Coo)

0

B (Cm - C’11)

1

e The quantity 7 = is the threshold of the test.

e The 1 can be left as a variable threshold and may be changed if our a
priori knowledge or costs are changed.

e Bayes criterion has led us to a Likelihood Ratio Test (LRT)
H()
AR)sn
Hl

Hl)
e An equivalent test is In A (R)sInn
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Summary of the Bayesian test:

e The Bayesian test can be conducted simply by calculating the
likelihood ratio A (R) and comparing it to the threshold.

Test design:

e Assign a-priori probabilities to the source outputs.

e Assign costs for each action.

¢ Assume distribution for P (R | Hl),pr‘HO <R | HO).
e calculate and simplify the A (R)

R
A(R Threshold device .
oaa ) P
Processor A(R)gﬂ
Hg

Likelihood ratio processor

Special case.
C’OO :CH =0 C =C =1

01 10

R=F, [ p, (RIH)R+P [p, (R|H)R
7-7, Z,

5P
A(R)Sh—t=InF, ~In(1-P)
1 1

o When the two hypotheses are equally likely, the threshold is zero.

Sufficient statistics.

e Sufficient statistics is a function T that transfers the initial data set
to the new data set T (R) that still contains all necessary information

contained in R regarding the problem under investigation.

e The set that contains a minimal amount of elements is called minimal

sufficient statistics.

e When making a decision knowing the value of the sufficient statistic

is just as good as knowing R.

The integrals in the Bayes test.

False alarm:
P, = fpr\HO (R | H0>dR'
Zl

We say that target is present when it is not.

Probability of detection:

P, = fpru{, <R | Hl)dR‘

Probabzillity of miss:

Py = fpr\Hl (R | Hl)dR'
Z

0
We say target is absent when it is present.




Special case: the prior probabilities unknown.

Minimax test.

R:%ﬁf%ﬂmem+Q£meAMva
Z, z-7
+011P1 f pr\Hl (R‘H1>dR+COIF)1fpr\H1 (R‘H1>dR
7-7, 7,
o If the regions Z and Z| fixed the integrals are determined.

R = R]CI[) + Plcu + Pl <C o CH)f)M - B) (010 - C(]O)(l - PF)

Po :1_P1

e The Bayesian risk will be function of P.
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R(P)=C,(1-P,)+C

1) 7 00

+P1 [(Cu - Coo) + (001 B 011)P - <010 - Coo)P ]
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e Bayesian test can be found if all the costs and a priori probabilities
are known.

o If we know all the probabilities we can calculate the Bayesian cost.

e Assume that we do not know P and just assume a certain one P1*
and design a corresponding test.

° IJEP1 changes the regions Z ,Z changes and with these also P and

D"

e The test is designed for Pl* but the actual a priori probability is P.
¢ By assuming Pl* we fix P and P.

R

7T

e Cost for different P is given by a
function R (Pl*, P )

¢ Because the threshold 7 is fixed the cost
R (Pl* P> is a linear function of Pl*

[

R:
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e Bayesian test minimizes the risk for Pl*

Py

|
|
[
|
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1‘ For other values ofP1
R(F.P)>R(R)

A function of P if P is fixed ® R(Pl) is strictly concave. (If A(R) is a
! ! continuos random variable with strictly

P

1

monotonic probability distribution function, the change of 1 always
change the risk.)

Minimax test.

e The Bayesian test designed to minimize the maximum possible risk is
called a minimax test.

e P is chosen to maximize our risk R <Pl*, Pl)

e To minimize the maximum risk we select the Pl* for which R <P1> is
maximum.

e If the maximum occurs inside the interval [0,1], the R (P1*7 P )Wﬂ]
become a horizontal line. Coefficient of P must be zero.

o (CH — C[)O> + (Cm — CH)P — (Cm — CUO>PF = 0 This equation is

M
the minimax equation.
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Special case.

Cost function is

Coo = Cu =0

001 = CM’ 010 = CF'

The risk is

R(‘Pl> = CFPF + ‘Pl (CMPM - CFPF) = POCFPF + ‘PlCMPM‘

The minimax equation is

c P, =C,P.

Neyman-Pearson test.

e Often it is difficult to assign realistic costs of a priori probabilities.
This can be bypassed if to work with the conditional probabilities PF
and P .

e We have two conflicting objectives to make PF as small as possible
and PD as large as possible.

Neyman-Pearson criterion.

Constrain P, = «' < a and design a test to maximize P (or minimize

P,) under this constraint.

e The solution can be obtained by using Lagrange multipliers.

F=P,+\P -0

F:IQ%GHHWB%Xfp%GHﬂWB—M
z, Z-2

o If P, = «, minimizing F' minimizes P .

F:Aa—aw+fpMjRum—A%%cuﬂth
ZO

e For any positive value of A an LRT will minimize F.

e I is minimized if we assign a point R to Z only when the term in the
bracket is negative.

Py, (RIH,)

o If < A assign point to Z (say H
pr‘HO <R|HU) g 0 (say 0)




e I is minimized by the likelihood ratio test. A (R)

I VA=

n
a'.

e To satisfy the constraint \ is selected so that PF

P, :pr\Hn <A|Ho>dA:a'
A

e Value of A\ will be nonnegative because p A (A | H 0) will be zero for
negative values of A. '

P (X[Ho) P, (X [H;)
B (XIH,) - P(XH)

Example.

We assume that under H, the source output is a constant voltage m.
Under H , the sourse output is zero. Voltage is corrupted by an additive
noise. The out put is sampled with N samples for each second. Each
noise sample is a i.i.d. zero mean Gaussian random variable with
variance o”.

H:r=m+n, i=12..,N
H :r=n, 1=12,.... N

X2
exp|——
2mo P [ 20° ]

The probability density of 7 under each hypothesis is:

B (R 1) =, (7~ m) = | L)
P (R |H,)=p, (R)= \/;_m exp —g

e The joint probability of N samples is:

o 815 T 2]

e The likelihood ratio is

o After cancelling common terms and taking logarithm:
N
m N
InAR)=—>"R -
0 =

m2
20°
e Likelihood ratio test is:




for normalisation.

1 & o g JNm
l=—> Rs—Inn+
T 2 aINm T g

e Under H [ is obtained by adding N independent zero mean

Gaussian variables with variance o” and then dividing by JNo
Therefore [ is N (0,1).

m & Nm? 4

— > R — slnn,

02; ' 20° H>0 ! o
N H, 0_2 N

Y Rs—lnt—=2y

i=1 H0 m 2

o

e Under H, [ is N[Wm ,1].
J,'Q

1
P, = —exp [——
F
(logn)£+d/2 V2 2

dz = erfc [ln_n + i]
d
where d = VNm

2

is the distance between the means of the two
o
densities.

e In the communication systems a special case is important

A
Pree) = R)PF + P1PM'

o If PO = P1 the threshold is one and Pr(g) £ %(PF + PM).

P j‘ 1 exp (:L‘ — d)2 dx Receiver Operating Characteristics (ROC).
pr— —_— X _—
b (logn)/d-+d /2 V2 2 e For a Neyman-Pearson test the values of P and P completely
~ 5 1 P specify the test performance.
(logn)/d—d /2

e P depends onP . The function of P (PF> is defined as the Receiver
Operating Characteristic (ROC).

e The Receiver Operating Characteristic (ROC) completely describes

the performance of the test as a function of the parameters of
interest.




Example.

o8 / - / /-"
dl.O/ e Receiver
- / T

Operating

P
T H../ / d=0.5 /"' Characteristic
/ / (ROC)

o / ,/
é’/

Properties of ROC.

o All continuous likelihood tests have ROC’s that are concave
downward.

o All continuous likelihood ratio tests have ROC’s that are above the
P =P.

e The slope of a curve in a ROC at a particular point is equal to the
value of the threshold 7 required to achieve the P, and P at that
point

Whenever the maximum value of the Bayes risk is interior to the
interval (0,1) of the P1 axis the minimax operating point is the
intersection of the line

(¢, -¢,)+(c,-¢c,)1-P)-(C,-C,)P, =0

1 D P
and the appropriate curve on the ROC.

Receiver
Operating
Characteristic

(ROC)

([ T E 04 o nR 0

PF—’

Determination of minimax operating point.




Conclusions.

e Using either the Bayes criterion of a Neyman-Pearson criterion, we
find that the optimum test is a likelihood ratio test.

e Regardless of the dimension of the observation space the optimum

test consist of comparing a scalar variable A (R)) with the threshold.

e For the binary hypothesis test the decision space is one dimensional.
e The test can be simplified by calculating the sufficient statistics.

e A complete description of the LRT performance was obtained by
plotting the conditioning probabilities PD and PF as the threshold 7
was varied.

M Hypotheses.
e We choose one of M hypotheses

e There are M source outputs each of which corresponds to one of M
hypotheses.

e We are forsed to make decisions.

e There are M” alternatives that may occur each time the experiment
is conducted.

H Probabilistic
Source transition
mechanism

Z: Observation space

Say:H,

Bayes Criterion.

C’Z.j cost of each course of actions.

Z_ region in observation space where we choseH

P a priori probabilities.

R= ZZPCUprH R|H )R

i=0 j=0
R is minimized through selecting Z..

Example M = 3.
=7 +7Z +2Z,
R=PCy [ p R|H)dR+P0mfle (R|H,)dR

Z—7,—~2,

+P020fpw (R|H,)dR+PC,, f P, (RIH )R

Z—7y—2,

+PC, f P, (RIH,)dR+PC, f P, (R|H,)dR

+PC,, f P, R|H)dR+P002fp‘H (R|H,)dR

Z—7y—2, Z,

PQCprr\HQ R | H2)dR

4




R= PoCoo + PICII + P2022

+f P2 (Co2 B 022>pr\H2 (R | H2) + Pl (Cm o CH)pr\Hl (R | Hl)}dR

+f Po (Cm o Coo>pru{n (R | Ho) + P2 (Cu o C22>pru{2 (R | HQ)}dR

+f K (Czo N COU)pr\HU (R | Ho) +h (021 - Cll>pr\H1 (R | Hl)}dR

¢ R is minimized if we assign each R to the region in which the value
of the integrand is the smallest.

I, (R)<I (R) and I, (R), choose H,
I (R)<I,(R) and I, (R), choose H
I,(R)<I (R) and I (R), choose H,

e If we use likelihood ratios

R|H
A (R)2 Py, (RIH))
pr|H0 <R ‘ H(])

(R (R H,)
: Py, (R H,)

The set of decision equations is:

1

2

A pr|H2

e Label the integrals I (R),Il (R),I2 (R).
H, or H, J ; : :
o or Special case. (often in communication)
Pl(C(n_Cn)Al <R)H§H P()(C10_000>+P2<012_002>A2 (R) C =C =C =0
1 Oy 00 11 22
H() or Hl CU = ]" Z = ]
P2 (002 B 022) A2 (R)H %H Po (020 B Coo) + P1 (021 B 001>A1 <R> H, or H,
o Pp, (RIH) s Fp, (RIH)
P2 (012 o 022) A2 (R) " §H Po (020 B Cm) + Pl (021 o O11> Al <R> H, or H,
ot Py, (RIH,) < Fp, (R|H,)
e M hypotheses always lead to a decision space that has, at most, Hy or H,
M —1 dimensions. Hy or H,
Py, (R | H2)H %H FiPyn (R | H1)

Decision Space

e Compute the posterior probabilities and choose the largest.

e Maximum a posteriori probability computer.




Special case.
Degeneration of hypothesis.
What happens if to combine H, and H,:
A/\2 (R) 012 = 021 =0.
For simplicity
H1 or Hg 001 = 010 = 020 = 002
COO = Cll = 022 = 0
First two equations of the test reduce to
H, or H,
PA,(R)+PA,(R) S P,

0

Dummy hypothesis.

e Actual problem has two hypothesis H and H..
e We introduce a new one H , With a priori probability P0 =0
o Let
P1+P2:1and01220027 212001
e We always choose H or H,. The test reduces to:

H2
Pz <O12 B C22>A2 <R)§]31 (021 o Cll)Al (R>
pr\H (R | HQ)
o Useful if ————— difficult to work with but A, (R), A, (R) are
pr\H (R | Hl)
simple. '

Conclusions.

1. The minimum dimension of the decision space is no more that

M —1. The boundaries of the decision regions are hyperplanes in the
<A1, e Amil) plane.

2. The test is simple to find but error probabilities are often difficult to
compute.

3. An important test is the minimum total probability of error test.
Here we compute the a posteriori probability of each test and choose
the largest.




