Bayesian Hypothesis testing

Statistical Decision Theory I.
Simple Hypothesis testing.
Binary Hypothesis testing.
Bayesian Hypothesis testing.
Minimax Hypothesis testing.
Neyman-Pearson criterion.
M-Hypotheses.
Receiver Operating Characteristics.
Composite Hypothesis testing.
Composite Hypothesis testing approaches.
Performance of GLRT for large data records.
Nuisance parameters.

Components of a decision theory problem.

1. Source - that generates an output.
2. Probabilistic transition mechanism - a device that knows which hypothesis is true. It generates a point in the observation space accordingly to some probability law.
3. Observation space – describes all the outcomes of the transition mechanism.
4. Decision - to each point in observation space is assigned one of the hypotheses.

Example:

\[p_{x}(N) \]

- When \(H_1 \) is true the source generates +1.
- When \(H_0 \) is true the source generates -1.
- An independent discrete random variable \(n \) whose probability density is added to the source output.
• The sum of the source output and \(n \) is observed variable \(r \).
• Observation space has finite dimension, i.e. observation consists of a set of \(N \) numbers and can be represented as a point in \(N \) dimensional space.
• Under the two hypotheses, we have
 \[
 H_1: r = 1 + n \\
 H_0: r = -1 + n
 \]
• After observing the outcome in the observation space we shall guess which hypothesis is true.
• We use a decision rule that assigns each point to one of the hypotheses.

Simple binary hypothesis testing.
• The decision problem in which each of two source outputs corresponds to a hypothesis.
• Each hypothesis maps into a point in the observation space.
• We assume that the observation space is a set of \(N \) observations: \(r_1, r_2, \ldots, r_N \).
• Each set can be represented as a vector \(r \):
 \[
 r = \begin{bmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 r_N
 \end{bmatrix}
 \]

• Detection and estimation applications involve making inferences from observations that are distorted or corrupted in some unknown manner.
• The probabilistic transition mechanism generates points in accord with the two known conditional densities \(p_{r|H_1}(r | H_1), p_{r|H_0}(r | H_0) \).
• The objective is to use this information to develop a decision rule.
Decision criteria.
- In the binary hypothesis problem either H_0 or H_1 is true.
- We are seeking decision rules for making a choice.
- Each time the experiment is conducted one of four things can happen:
 1. H_0 true; choose $H_0 \rightarrow$ correct
 2. H_0 true; choose H_1
 3. H_1 true; choose $H_1 \rightarrow$ correct
 4. H_1 true; choose H_0
- The purpose of a decision criterion is to attach some relative importance to the four possible courses of action.
- The method for processing the received data depends on the decision criterion we select.

Bayesian criterion.
Source generates two outputs with given (a priori) probabilities P_1, P_0. These represent the observer information before the experiment is conducted.
- The cost is assigned to each course of actions. $C_{00}, C_{10}, C_{01}, C_{11}$.
- Each time the experiment is conducted a certain cost will be incurred.
- The decision rule is designed so that on the average the cost will be as small as possible.
- Two probabilities are averaged over: the a priori probability and probability that a particular course of action will be taken.

$$R = C_{00} P_0 \int_{Z_0} p_{\cdot | H_0} (R | H_0) dR + C_{10} P_0 \int_{Z_1} p_{\cdot | H_0} (R | H_0) dR$$
$$+ C_{11} P_1 \int_{Z_1} p_{\cdot | H_1} (R | H_1) dR + C_{01} P_1 \int_{Z_0} p_{\cdot | H_1} (R | H_1) dR$$
- Z_0, Z_1 cover the observation space (the integrals integrate to one).
- We assume that the cost of a wrong decision is higher than the cost of a correct decision.
 $C_{10} > C_{00}$
 $C_{01} > C_{11}$
- For Bayesian test the regions Z_0 and Z_1 are chosen such that the risk will be minimized.

- The expected value of the cost is
 $$R = C_{00} P_0 \int_{Z_0} p_{\cdot | H_0} (R | H_0) dR + C_{10} P_0 \int_{Z_1} p_{\cdot | H_0} (R | H_0) dR$$
 $$+ C_{11} P_1 \int_{Z_1} p_{\cdot | H_1} (R | H_1) dR + C_{01} P_1 \int_{Z_0} p_{\cdot | H_1} (R | H_1) dR$$
- Z_0, Z_1 cover the observation space (the integrals integrate to one).
- We assume that the cost of a wrong decision is higher than the cost of a correct decision.
 $C_{10} > C_{00}$
 $C_{01} > C_{11}$
- For Bayesian test the regions Z_0 and Z_1 are chosen such that the risk will be minimized.

- The binary observation rule divides the total observation space Z into two parts: Z_0, Z_1.
- Each point in observation space is assigned to one of these sets.
- The expression of the risk in terms of transition probabilities and the decision regions:
• We assume that the decision is to be made for each point in observation space. \((Z = Z_0 + Z_1)\)

• The decision regions are defined by the statement:

\[
\mathbf{R} = C_0 P_0 \int_{z_0} p_{R|H_0}(R | H_0) dR + C_1 P_0 \int_{z - z_0} p_{R|H_0}(R | H_0) dR
\]

\[+ C_1 P_1 \int_{z - z_0} p_{R|H_1}(R | H_1) dR + C_0 P_1 \int_{z_0} p_{R|H_1}(R | H_1) dR\]

Observing that

\[
\int_{z} p_{R|H_0}(R | H_0) dR = \int_{z} p_{R|H_1}(R | H_1) dR = 1
\]

\[
\mathbf{R} = P_0 C_{10} + P_1 C_{11} + \int_{z_0} \left[P_1 \left(C_{01} - C_{11} \right) p_{R|H_1}(R | H_1) \right] dR
\]

• The integral represents the cost controlled by those points \(\mathbf{R}\) that we assign to \(Z_0\).

• The value of \(\mathbf{R}\) where the second term is larger than the first contribute to the negative amount to the integral and should be included in \(Z_0\).

• The value of \(\mathbf{R}\) where two terms are equal has no effect.

• The decision regions are defined by the statement:

If \(P_1 \left(C_{01} - C_{11} \right) p_{R|H_1}(R | H_1) \geq P_0 \left(C_{10} - C_{00} \right) p_{R|H_0}(R | H_0)\),

assign \(\mathbf{R}\) to \(Z_1\) and say that \(H_1\) is true. Otherwise assign \(\mathbf{R}\) to \(Z_0\) and say that \(H_0\) is true.

• This may be expressed as:

\[
p_{R|H_1}(R | H_1) \geq P_0 \left(C_{10} - C_{00} \right)
\]

\[
p_{R|H_0}(R | H_0) \geq P_1 \left(C_{01} - C_{11} \right)
\]

\[
\Lambda(R) = \frac{p_{R|H_1}(R | H_1)}{p_{R|H_0}(R | H_0)} \text{ is called likelihood ratio.}
\]

• Regardless of the dimension of \(\mathbf{R}\), \(\Lambda(R)\) is one-dimensional variable.

• Data processing is involved in computing \(\Lambda(R)\) and is not affected by the prior probabilities and cost assignments.

• The quantity \(\eta \triangleq \frac{P_0 \left(C_{10} - C_{00} \right)}{P_1 \left(C_{01} - C_{11} \right)}\) is the threshold of the test.

• The \(\eta\) can be left as a variable threshold and may be changed if our a priori knowledge or costs are changed.

• Bayes criterion has led us to a Likelihood Ratio Test (LRT)

\[
\Lambda(R) \leq \eta
\]

• An equivalent test is \(\ln \Lambda(R) \leq \ln \eta\).
Summary of the Bayesian test:
- The Bayesian test can be conducted simply by calculating the likelihood ratio $\Lambda(R)$ and comparing it to the threshold.

Test design:
- Assign a-priori probabilities to the source outputs.
- Assign costs for each action.
- Assume distribution for $p_{\bar{H}_1}(R | H_0)$, $p_{\bar{H}_0}(R | H_1)$.
- Calculate and simplify the $\Lambda(R)$

The integrals in the Bayes test.
- **False alarm:**
 \[P_F = \int_{z_0}^{z_1} p_{\bar{H}_1} \left(R \mid H_0 \right) dR. \]
 We say that target is present when it is not.
- **Probability of detection:**
 \[P_D = \int_{z_1}^{\infty} p_{\bar{H}_1} \left(R \mid H_1 \right) dR. \]
- **Probability of miss:**
 \[P_M = \int_{z_0}^{z_1} p_{\bar{H}_1} \left(R \mid H_1 \right) dR. \]
 We say target is absent when it is present.

Sufficient statistics.
- Sufficient statistics is a function T that transfers the initial data set to the new data set $T(R)$ that still contains all necessary information contained in R regarding the problem under investigation.
- The set that contains a minimal amount of elements is called minimal sufficient statistics.
- When making a decision knowing the value of the sufficient statistic is just as good as knowing R.

Special case.
- $C_{00} = C_{11} = 0 \quad C_{01} = C_{10} = 1$
- $R = P_0 \int_{z-\infty}^{z_0} p_{\bar{H}_1} \left(R \mid H_0 \right) dR + P_1 \int_{z_0}^{\infty} p_{\bar{H}_1} \left(R \mid H_1 \right) dR$.
-\[
\ln \Lambda(R) = \frac{P_0}{P_1} \ln \frac{P_0}{P_1} = \ln P_0 - \ln (1 - P_1)
\]
- When the two hypotheses are equally likely, the threshold is zero.
Special case: the prior probabilities unknown.

Minimax test.

\[R = C_{00} P_0 \int_{Z_0} p_{\theta | H_0} (R | H_0) \, dR + C_{10} P_0 \int_{Z_0} p_{\theta | H_0} (R | H_0) \, dR + C_{11} P_1 \int_{Z_1} p_{\theta | H_1} (R | H_1) \, dR + C_{01} P_1 \int_{Z_1} p_{\theta | H_1} (R | H_1) \, dR \]

- If the regions \(Z_0 \) and \(Z_1 \) fixed the integrals are determined.

\[R = P_0 C_{10} + P_1 C_{11} + P_1 (C_{01} - C_{11}) P_M - P_0 (C_{10} - C_{00}) (1 - P_F) \]

\(P_0 = 1 - P_1 \)

- The Bayesian risk will be function of \(P_1 \).

- The test is designed for \(P_1^* \) but the actual a priori probability is \(P_1 \).
 - By assuming \(P_1^* \) we fix \(P_F \) and \(P_D \).
 - Cost for different \(P_1 \) is given by a function \(R(P_1^*, P_1) \).

\[R(P_1) = C_{00} (1 - P_F) + C_{10} P_F + P_1 [(C_{11} - C_{00}) + (C_{01} - C_{11}) P_M - (C_{10} - C_{00}) P_F] \]

- Bayesian test can be found if all the costs and a priori probabilities are known.
- If we know all the probabilities we can calculate the Bayesian cost.
- Assume that we do not know \(P_1 \) and just assume a certain one \(P_1^* \) and design a corresponding test.
- If \(P_1 \) changes the regions \(Z_0 \), \(Z_1 \) changes and with these also \(P_F \) and \(P_D \).

- Bayesian test can be found if all the costs and a priori probabilities are known.
- If we know all the probabilities we can calculate the Bayesian cost.
- Assume that we do not know \(P_1 \) and just assume a certain one \(P_1^* \) and design a corresponding test.
- If \(P_1 \) changes the regions \(Z_0 \), \(Z_1 \) changes and with these also \(P_F \) and \(P_D \).

\[\text{min} \{ R(P_1), R(P_1^*) \} \]

- The Bayesian test designed to minimize the maximum possible risk is called a minimax test.
- \(P_1 \) is chosen to maximize our risk \(R(P_1^*, P_1) \).
- To minimize the maximum risk we select the \(P_1^* \) for which \(R(P_1) \) is maximum.
- If the maximum occurs inside the interval \([0, 1]\), the \(R(P_1^*, P_1) \) will become a horizontal line. Coefficient of \(P_1 \) must be zero.
- \((C_{11} - C_{00}) + (C_{01} - C_{11}) P_M - (C_{10} - C_{00}) P_F = 0 \) This equation is the minimax equation.
Risk curves: maximum value of R at a) $P_1 = 1$ b) $P_1 = 0$ c) $0 \leq P_1 \leq 1$

Special case.

Cost function is

\[
C_{00} = C_{11} = 0, \quad C_{01} = C_{10} = C_F.
\]

The risk is

\[
R(P) = C_F P_F + P_1 \left(C_M P_M - C_F P_F \right) = P_0 C_F P_F + P_1 C_M P_M.
\]

The minimax equation is

\[
C_M P_M = C_F P_F.
\]

Neyman-Pearson test.

- Often it is difficult to assign realistic costs of a priori probabilities.
 - This can be bypassed if to work with the conditional probabilities P_F and P_D.
- We have two conflicting objectives to make P_F as small as possible and P_D as large as possible.

Neyman-Pearson criterion.

Constrain $P_F = \alpha' \leq \alpha$ and design a test to maximize P_D (or minimize P_M) under this constraint.

- The solution can be obtained by using Lagrange multipliers.

\[
F = P_M + \lambda \left[P_F - \alpha' \right]
\]

- If $P_F = \alpha$, minimizing F minimizes P_M.

\[
F = \lambda (1 - \alpha') + \int_{Z_0}^{Z_1} \left[p_{\theta \mid H_1}(R \mid H_1) - \lambda p_{\theta \mid H_0}(R \mid H_0) \right] dR
\]

- For any positive value of λ an LRT will minimize F.
- F is minimized if we assign a point R to Z_0 only when the term in the bracket is negative.

\[
\frac{p_{\theta \mid H_1}(R \mid H_1)}{p_{\theta \mid H_0}(R \mid H_0)} < \lambda \text{ assign point to } Z_0 \text{ (say } H_0)\]
• F is minimized by the likelihood ratio test. \(\Lambda \geq \eta \)

• To satisfy the constraint \(\lambda \) is selected so that \(P_f = \alpha' \).

\[
P_f = \int_{\Lambda}^{\infty} p_{\Lambda|H_0}(\Lambda \mid H_0) d\Lambda = \alpha'
\]

• Value of \(\lambda \) will be nonnegative because \(p_{\Lambda|H_0}(\Lambda \mid H_0) \) will be zero for negative values of \(\lambda \).

Example.
We assume that under \(H_i \) the source output is a constant voltage \(m \).
Under \(H_0 \) the source output is zero. Voltage is corrupted by an additive noise. The output is sampled with \(N \) samples for each second. Each noise sample is a i.i.d. zero mean Gaussian random variable with variance \(\sigma^2 \).

\(H_i : r_i = m + n_i, \quad i = 1, 2, \ldots, N \)

\(H_0 : r_i = n_i, \quad i = 1, 2, \ldots, N \)

\[
p_{\eta_i}(X) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{X^2}{2\sigma^2}\right)
\]

The probability density of \(r_i \) under each hypothesis is:

\[
p_{r_i|H_i}(R_i \mid H_i) = p_{\eta_i}(R_i - m) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(R_i - m)^2}{2\sigma^2}\right)
\]

\[
p_{r_i|H_0}(R_i \mid H_0) = p_{\eta_i}(R_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{R_i^2}{2\sigma^2}\right)
\]

• The joint probability of \(N \) samples is:

\[
p_{r|H_i}(\mathbf{R} \mid H_i) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(R_i - m)^2}{2\sigma^2}\right)
\]

\[
p_{r|H_0}(\mathbf{R} \mid H_0) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{R_i^2}{2\sigma^2}\right)
\]

• The likelihood ratio is

\[
\Lambda(\mathbf{R}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(R_i - m)^2}{2\sigma^2}\right)
\]

\[
\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{R_i^2}{2\sigma^2}\right)
\]

• After cancelling common terms and taking logarithm:

\[
\ln \Lambda(\mathbf{R}) = \frac{m^2}{\sigma^2} \sum_{i=1}^{N} R_i - \frac{N m^2}{2\sigma^2}.
\]

• Likelihood ratio test is:
\[
\frac{m}{\sigma^2} \sum_{i=1}^{N} R_i - \frac{N m^2}{2 \sigma^2} \ln \eta,
\]

\[
\sum_{i=1}^{N} R_i \lesssim \frac{\sigma^2}{m} \ln \eta + \frac{N m}{2} \triangleq \gamma.
\]

- We use \(d \triangleq \sqrt{\frac{N m}{\sigma}}\) for normalisation.

\[
l = \frac{1}{\sqrt{N} \sigma} \sum_{i=1}^{N} R_i \lesssim \frac{\sigma}{\sqrt{N} m} \ln \eta + \frac{\sqrt{N} m}{2 \sigma}
\]

- Under \(H_0\) \(l\) is obtained by adding \(N\) independent zero mean Gaussian variables with variance \(\sigma^2\) and then dividing by \(\sqrt{N} \sigma\). Therefore \(l\) is \(N(0,1)\).

\[
P_D = \int_{(\log \eta)/d + d/2}^{(\log \eta)/d - d/2} \frac{1}{\sqrt{2}} \exp \left(-\frac{(x - d)^2}{2} \right) dx
\]

\[
= \int_{(\log \eta)/d - d/2}^{(\log \eta)/d + d/2} \frac{1}{\sqrt{2}} \exp \left(-\frac{(y)^2}{2} \right) dy = \text{erfc} \left(\frac{\log \eta - d}{d} \right)
\]

- In the communication systems a special case is important

\[
\text{Pr}(\varepsilon) \triangleq P_b P_F + P_i P_M.
\]

- If \(P_d = P_i\) the threshold is one and \(\text{Pr}(\varepsilon) \triangleq \frac{1}{2} (P_F + P_M)\).

- Under \(H_1\) \(l\) is \(N\left(\frac{\sqrt{N} m}{\sigma}, 1 \right)\).

\[
P_F = \int_{(\log \eta)/d + d/2}^{\infty} \frac{1}{\sqrt{2}} \exp \left(-\frac{x^2}{2} \right) dx = \text{erfc} \left(\frac{\ln \eta + d}{d} \right)
\]

where \(d \triangleq \sqrt{\frac{N m}{\sigma}}\) is the distance between the means of the two densities.

Receiver Operating Characteristics (ROC).

- For a Neyman-Pearson test the values of \(P_F\) and \(P_D\) completely specify the test performance.

- \(P_D\) depends on \(P_F\). The function of \(P_D (P_F)\) is defined as the Receiver Operating Characteristic (ROC).

- The Receiver Operating Characteristic (ROC) completely describes the performance of the test as a function of the parameters of interest.
Example.

Properties of ROC.

- All continuous likelihood tests have ROC’s that are concave downward.
- All continuous likelihood ratio tests have ROC’s that are above the $P_D = P_F$.
- The slope of a curve in a ROC at a particular point is equal to the value of the threshold η required to achieve the P_F and P_D at that point.

Whenever the maximum value of the Bayes risk is interior to the interval (0,1) of the P1 axis the minimax operating point is the intersection of the line
\[
(C_{11} - C_{00}) + (C_{01} - C_{11})(1 - P_F) - (C_{10} - C_{00})P_F = 0
\]
and the appropriate curve on the ROC.
Conclusions.

• Using either the Bayes criterion of a Neyman-Pearson criterion, we find that the optimum test is a likelihood ratio test.
• Regardless of the dimension of the observation space the optimum test consist of comparing a scalar variable $\Lambda(R)$ with the threshold.
• For the binary hypothesis test the decision space is one dimensional.
• The test can be simplified by calculating the sufficient statistics.
• A complete description of the LRT performance was obtained by plotting the conditioning probabilities P_D and P_F as the threshold η was varied.

M Hypotheses.

• We choose one of M hypotheses.
• There are M source outputs each of which corresponds to one of M hypotheses.
• We are forced to make decisions.
• There are M^2 alternatives that may occur each time the experiment is conducted.

Bayes Criterion.

C_i cost of each course of actions.

Z_i: region in observation space where we chose H_i.

P_i: a priori probabilities.

$R = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} P_j C_{ij} \int_{Z_i} p_{\theta_i} (R | H_j) dR$

R is minimized through selecting Z_i.

Example $M = 3$.

$Z = Z_0 + Z_1 + Z_2$

$R = P_0 C_{00} \int_{Z_0} p_{\theta_i} (R | H_0) dR + P_0 C_{10} \int_{Z_1} p_{\theta_i} (R | H_0) dR$

$+ P_0 C_{20} \int_{Z_2} p_{\theta_i} (R | H_0) dR + P_1 C_{01} \int_{Z_0} p_{\theta_i} (R | H_1) dR$

$+ P_1 C_{11} \int_{Z_1} p_{\theta_i} (R | H_1) dR + P_1 C_{21} \int_{Z_2} p_{\theta_i} (R | H_1) dR$

$+ P_2 C_{02} \int_{Z_0} p_{\theta_i} (R | H_2) dR + P_2 C_{12} \int_{Z_1} p_{\theta_i} (R | H_2) dR$

$+ P_2 C_{22} \int_{Z_2} p_{\theta_i} (R | H_2) dR$
\[
R = P_0 C_{00} + P_1 C_{11} + P_2 C_{22} \\
+ \int_{Z_0} [P_2 (C_{02} - C_{22}) p_{r|H_2} (R | H_2) + P_1 (C_{01} - C_{11}) p_{r|H_1} (R | H_1)] dR \\
+ \int_{Z_1} [P_0 (C_{10} - C_{00}) p_{r|H_0} (R | H_0) + P_2 (C_{12} - C_{22}) p_{r|H_2} (R | H_2)] dR \\
+ \int_{Z_2} [P_0 (C_{20} - C_{00}) p_{r|H_0} (R | H_0) + P_1 (C_{21} - C_{11}) p_{r|H_1} (R | H_1)] dR
\]

- \(R \) is minimized if we assign each \(R \) to the region in which the value of the integrand is the smallest.
- Label the integrals \(I_0 (R), I_1 (R), I_2 (R) \).

\[
P_1 (C_{01} - C_{11}) \Lambda_1 (R) \leq P_0 (C_{10} - C_{00}) + P_2 (C_{12} - C_{22}) \Lambda_2 (R),
\[
P_2 (C_{02} - C_{22}) \Lambda_2 (R) \leq P_0 (C_{20} - C_{00}) + P_1 (C_{21} - C_{11}) \Lambda_1 (R),
\]

\[
P_2 (C_{12} - C_{22}) \Lambda_2 (R) \leq P_0 (C_{20} - C_{00}) + P_1 (C_{21} - C_{11}) \Lambda_1 (R)
\]

- \(M \) hypotheses always lead to a decision space that has, at most, \(M - 1 \) dimensions.

\[
\Lambda_1 (R) \quad H_0 \quad H_2 \\
\Lambda_2 (R) \quad H_0 \quad H_1 \\
\text{Decision Space}
\]

\[
I_0 (R) < I_1 (R) \quad \text{and} \quad I_2 (R), \text{choose } H_0 \\
I_1 (R) < I_0 (R) \quad \text{and} \quad I_2 (R), \text{choose } H_1 \\
I_2 (R) < I_0 (R) \quad \text{and} \quad I_1 (R), \text{choose } H_2
\]

- If we use likelihood ratios

\[
\Lambda_1 (R) \equiv \frac{P_{r|H_1} (R | H_1)}{P_{r|H_0} (R | H_0)} \\
\Lambda_2 (R) \equiv \frac{P_{r|H_2} (R | H_2)}{P_{r|H_0} (R | H_0)}
\]

The set of decision equations is:

- \(M \) hypotheses always lead to a decision space that has, at most, \(M - 1 \) dimensions.

- Compute the posterior probabilities and choose the largest.
- Maximum a posteriori probability computer.
Special case.

Degeneration of hypothesis.

What happens if to combine \(H_1 \) and \(H_2 \):

\[
C_{12} = C_{21} = 0.
\]

For simplicity:

\[
C_{01} = C_{20} = C_{02} = C_{22} = 0.
\]

First two equations of the test reduce to:

\[
P_1 \Lambda_1(R) + P_2 \Lambda_2(R) \leq P_0.
\]

Dummy hypothesis.

- Actual problem has two hypothesis \(H_1 \) and \(H_2 \).
- We introduce a new one \(H_0 \) with a priori probability \(P_0 = 0 \).
- Let:
 \[
P_1 + P_2 = 1 \text{ and } C_{12} = C_{02}, \ C_{21} = C_{01} \]
- We always choose \(H_1 \) or \(H_2 \). The test reduces to:

\[
P_2 (C_{12} - C_{22}) \Lambda_2(R) \leq P_1 (C_{21} - C_{11}) \Lambda_1(R)
\]

- Useful if \(\frac{P_{H_2}(R | H_2)}{P_{H_1}(R | H_1)} \) difficult to work with but \(\Lambda_1(R) \), \(\Lambda_2(R) \) are simple.

Conclusions.

1. The minimum dimension of the decision space is no more that \(M - 1 \). The boundaries of the decision regions are hyperplanes in the \((\Lambda_1, ..., \Lambda_{m-1}) \) plane.
2. The test is simple to find but error probabilities are often difficult to compute.
3. An important test is the minimum total probability of error test. Here we compute the a posteriori probability of each test and choose the largest.