Composite Hypotheses testing

e In many hypothesis testing problems there are many possible
distributions that can occur under each of the hypotheses.

e The output of the source is a set of parameters (points in a parameter
space X ).
e The hypothesis corresponds to subsets of .

e The probability density covering the mapping from the parameter
space to the observation space is denoted by P (R | 9) and 1is

assumed to be known for all values of 6 in .

e The final component is a decision rule.
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Example:

e For two hypothesis the observed variable will be:

R2
By n (R1H) = e 5L

1
2ma

(R— MY
20_2 ) MO

H:p, (RIH)=




Baysian formulation of the composite hypothesis testing problem.

e We assume that the parameter is a random variable 6 taking on the
values in .

Random variable 0

e The known probability density on 6 enables us to reduce the problem
to a simple hypothesis-testing problem by integrating over 6.

°* D, (R | (9) is interpreted as the conditional distribution of R given 6.
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Example

e We assume that the probability density governing m on H Rt
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e The likelihood ratio becomes:
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e By integrating and taking logarithm






e When 6 is a random variable with an unknown density, the test
procedure is not clearly specified.

- Minimax test over the unknown density.

- To try several densities based on partial knowledge of 6 that is
available. In many cases the test structure will be insensitive to the
detailed behavior of the probability density.



0 nonrandom variable

e Because 6 has no probability density over which to average the Bayes
test in not meaningful. (We use Neyman-Pearson tests).

e Over all possible detectors that have a given P the one that yields
the highest P is called Uniform Most Powerful (UMP) test.

e The best performance we could achieve would be obtained if an
actual test curve equals the bound for all M € Y.

e For given P a uniform most powerful UMP test to exist:

An UMP exist if we are able to design a complete likelihood ratio
test (including the threshold) for every M € x without knowing M .

e In general the bound can be reached for any particular 8 simply by
designing an ordinary LRT for that particular 6.

e The UMP test must be as good as any other test for every 6.
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A necessary and sufficient condition for UMP.

A UMP test exist if and only if the likelihood ratio test for every
6 € ycan be completely defined (including threshold) without
knowledge of 6.

If UMP does not exist.
Generalized likelihood ratio test.

The perfect measurement bound suggests that a logical procedure is to
estimate 6 assuming H, is true, then estimate 6 assuming H  is true,
and use these estimates in a likelihood ratio test as if they were correct.
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where 6/ ranges over all 6 in H, and 6 ranges over all ¢ in H_

We make a ML estimate of (91, assuming that H_ is true. We then

evaluate p (R | (91> for 6 = él and use this value in numerator.

1"|91

e A test contains a nuisance parameter. We are not directly concerned

with the parameter it enters into the problem since it affects the PDF
under H and H..

e The GLRT decides H, if the fit to the data of the signal under H

1
produces a much smaller error, as measured by (91 than a fit to the

signal under i/, with estimated parameter 6,



e For large data records the detector the GLRT easy to find.
e The conditions under which the asymptotic conditions hold are:

- When the data record is large and the signal is weak

- When the Maximum Likelihood Estimation (MLE) attains it
asymptotic PDF.

e The composite Hypothesis testing problem can be cast as parameter
test of the PDF.

e Consider a PDF p(R,0) where 6 is a p x 1 vector of unknown
parameters.

e The parameter test is:

H

= R,

g




e Where él is the MLE of 6 under H , the unrestricted MLE.
o éo is the MLE of 6 under H ,» the restricted MLE.

e As N — oo and for unbiased estimation the variance of the
estimation is given by the Cramer-Rao bound. We can express the
ML estimation of the parameter (91 and use this value in the GLRT
calculation:



Detection of Gaussially distributed random variables.

The general Gaussian problem
Hypotheses testing in case of Gaussian distribution
Equal Covariance Matrices.

Equal Mean vectors.



Definition.

e A set of random variables r,7,,...,7 is defined as jointly Gaussian if

all their linear combinations are Gaussian random variables.

e A vector r is a jointly Gaussian random vector when its components
are jointly Gaussian.

e In other words if
N
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is a Gaussian random variable for all finite G, then r is a Gaussian
vector.

e A hypothesis-testing problem is called a general GGaussian problem if
Py (R | H Z) is a Gaussian density on all hypotheses.



e We define:
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o Let the observation space to be N dimensional vector (or column
matrix) T:




e Under the hypothesis H . we assume that I is a Gaussian random
vector, completely specified by its mean vector and covariance

matrix.
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e The covariance matrix is
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e The inverse of K = Q
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e The probability density of r on H,
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e The probability density of r on H_
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e Likelihood ratio test
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e The test consists of finding the difference between two quadratic
forms.



Special case: Equal covariance matrices.
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K1 — KO = K.

Q = K.
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e [(R) is a scalar Gaussian random variable obtained by linear
transform of jointly Gaussian random variables.



e The test can completely described by the distance between the means
of the two hypotheses when the variance was normalized to be equal
to one.
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e The performance for the equal covariance (Gaussian case is completely
determined by the quadratic form.




Examples.

Case 1: Independent Components with Equal Variance.

e Each . has the same variance o’ and is statistically independent:

K =71,
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e The sufficient statistics is just the dot product of the observed
vector R and the mean difference vector Am.
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e d” =Am’ — [Am= —2AmTAm: —2‘Am‘2.
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d corresponds to the distance between the two mean value vectors

divided by the standard deviation of R..



Case 2: Independent components with Unequal Variance.
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e The result can be interpreted in a new co-ordinate system

Am' and R =+ R.
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e Scale of each axis is changed so that the variances are all equal to
one.

e d corresponds to the difference vector in this “scaled” coordinate
system.

e In the scaled coordinate system: [(R)= Am'- R;.



Case 3: Eigenvectors representation.
Equal mean vectors.

e We represent the R in a new coordinate system in which the
components are statistically independent random variables.

e The new set of coordinate aces is defined by the orthogonal unit
vectors @, Q,,...,Q
9,0, =0,

e We denote the observation in the new coordinate system by r’.

e We select the orientation of the new system so that the components
r! and ’rj’ are uncorrelated.

e New component is expressed simply as a dot product:

A
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e The variance matrix in the new coordinate system is calculated as
Ao, =@ Ko .

e The coordinate vectors should satisfy A@ = K¢@.

Properties of the K:

e Because K is symmetric, its eigenvalues are real.

e Because K is a covariance matrix, the eigenvalues are nonnegative.

e If the roots )‘z are distinct, the corresponding eigenvectors are
orthogonal.

e If a particular root is of multiplicity M the M associated
eigenvectors are linearly independent.



e The mean difference vector

Aml’ = (pfAm
Am; = (pgAm
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e The resulting sufficient statistic in the new coordinate system is
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e There always exist a coordinate system for which the random
variables are uncorrelated and that the new system is related to the
old system by a linear transformation.



Equal Mean vectors.

e The mean vectors are equal
m =m, 2 m
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e The mean value vector does not contain any information telling us

which of the hypothesis is true. The likelihood test subtracts them
from the received vector (we may assume m = 0).

e The difference of inverse matrices:
Q=Q,—Q,
Hl
e Likelihood ratio test [(R) = R"AQR <2y
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Special cases.

Case 1: Diagonal Covariance Matrix: Equal Variances.

e In case of H the r, contains the same variable as on H plus
additional signal components that may be correlated.
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Case 2: Symmetric Hypotheses, Uncorrelated Noise.
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Conclusions.

e The sufficient statistic for the general Gaussian problem is the
difference between two quadratic forms

I(R) = %(RT _m(];)Qo (R_m())_%(RT _m1T>Q1 (R_m1>'

e A particular simple case was the one where the covariance matrixes of

the hypotheses were equal. Then LLR test is [(R) =1Am"' -Q-R.
e And the performance is characterized by d° = Am' - Q- Am.

e The results described above can be obtained similarly for the M -

hypothesis case.



