
Composite Hypotheses testing  
• In many hypothesis testing problems there are many possible 

distributions that can occur under each of the hypotheses.  
• The output of the source is a set of parameters (points in a parameter 

space χ).  
• The hypothesis corresponds to subsets of χ.   
• The probability density covering the mapping from the parameter 

space to the observation space is denoted by ( )
r|

R |p
θ

θ  and is 
assumed to be known for all values of θ in χ. 

• The final component is a decision rule. 
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Example: 

• For two hypothesis the observed variable will be: 
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Baysian formulation of the composite hypothesis testing problem. 

• We assume that the parameter is a random variable θ taking on the 
values in χ. 

Random variable θ 
• The known probability density on θ enables us to reduce the problem 

to a simple hypothesis-testing problem by integrating over θ . 
• ( )r|

|p
θ

θR  is interpreted as the conditional distribution of R  given θ .  
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Example 

• We assume that the probability density governing m  on 1H  is  
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• The likelihood ratio becomes: 
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• By integrating and taking logarithm 
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• When θ is a random variable with an unknown density, the test 
procedure is not clearly specified. 
- Minimax test over the unknown density. 
- To try several densities based on partial knowledge of θ that is 

available. In many cases the test structure will be insensitive to the 
detailed behavior of the probability density. 

 



θ nonrandom variable 
• Because θ has no probability density over which to average the Bayes 

test in not meaningful. (We use Neyman-Pearson tests). 
• Over all possible detectors that have a given FP  the one that yields 

the highest DP  is called Uniform Most Powerful (UMP) test.  
• The best performance we could achieve would be obtained if an 

actual test curve equals the bound for all M χ∈ .  
• For given FP  a uniform most powerful UMP test to exist: 

 An UMP exist if we are able to design a complete likelihood ratio 
test (including the threshold) for every M χ∈  without knowing M . 

• In general the bound can be reached for any particular θ simply by 
designing an ordinary LRT for that particular θ .  

• The UMP test must be as good as any other test for every θ . 
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A necessary and sufficient condition for UMP. 
A UMP test exist if and only if the likelihood ratio test for every 
θ χ∈ can be completely defined (including threshold) without 
knowledge of θ . 
 
If UMP does not exist. 
Generalized likelihood ratio test. 
The perfect measurement bound suggests that a logical procedure is to 
estimate θ assuming 1H  is true, then estimate θ assuming 0H  is true, 
and use these estimates in a likelihood ratio test as if they were correct. 
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 where 1θ  ranges over all θ in 1H  and 0θ  ranges over all θ in 0H   

We make a ML estimate of 1θ , assuming that 1H  is true. We then 

evaluate ( )
1

1r|
R |p

θ
θ  for 1 1̂θ θ=  and use this value in numerator.  

• A test contains a nuisance parameter. We are not directly concerned 
with the parameter it enters into the problem since it affects the PDF 
under 0H  and 1H . 

• The GLRT decides 1H  if the fit to the data of the signal under 1H  
produces a much smaller error, as measured by 1̂θ  than a fit to the 
signal under 0H  with estimated parameter 0̂θ  

 
 
  



• For large data records the detector the GLRT easy to find. 
• The conditions under which the asymptotic conditions hold are: 
- When the data record is large and the signal is weak 

- When the Maximum Likelihood Estimation (MLE) attains it 
asymptotic PDF. 

• The composite Hypothesis testing problem can be cast as parameter 
test of the PDF. 

• Consider a PDF ( )R,p θ  where θ is a 1p×  vector of unknown 
parameters.  

• The parameter test is: 
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• Where 1̂θ  is the MLE of θ under 1H , the unrestricted MLE.  
• 0̂θ  is the MLE of θ under 0H , the restricted MLE.  
• As N → ∞ and for unbiased estimation the variance of the 

estimation is given by the Cramer-Rao bound. We can express the 
ML estimation of the parameter 1̂θ  and use this value in the GLRT 
calculation:  

 

 
 



Detection of Gaussially distributed random variables. 
 
The general Gaussian problem 
Hypotheses testing in case of Gaussian distribution 
Equal Covariance Matrices. 
Equal Mean vectors. 
 



Definition.  
• A set of random variables 1 2, , ,

N
r r r…  is defined as jointly Gaussian if 

all their linear combinations are Gaussian random variables. 
• A vector r is a jointly Gaussian random vector when its components 

are jointly Gaussian. 
• In other words if  
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is a Gaussian random variable for all finite TG , then r is a Gaussian 

vector. 

• A hypothesis-testing problem is called a general Gaussian problem if 
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R  is a Gaussian density on all hypotheses.  



• We define: 
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• Let the observation space to be N dimensional vector (or column 
matrix) r: 
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• Under the hypothesis 1H  we assume that r is a Gaussian random 
vector, completely specified by its mean vector and covariance 
matrix. 
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• The covariance matrix is  
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• The inverse of -1

1 1K Q=  
 1 1 1 1K Q =Q K I=  
• The probability density of r on 1H  
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• The probability density of r on 0H  
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• Likelihood ratio test  
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• The test consists of finding the difference between two quadratic 
forms. 



Special case: Equal covariance matrices. 

1 0K K K= . 
-1Q K= . 
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• ( )Rl  is a scalar Gaussian random variable obtained by linear 
transform of jointly Gaussian random variables.  



• The test can completely described by the distance between the means 
of the two hypotheses when the variance was normalized to be equal 
to one. 
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• The performance for the equal covariance Gaussian case is completely 

determined by the quadratic form.



Examples. 
Case 1: Independent Components with Equal Variance. 
• Each ir  has the same variance 2σ  and is statistically independent:  
 2Iσ=K , 

 2

1 I
σ

=Q , 

•  The sufficient statistics is just the dot product of the observed 
vector R  and the mean difference vector m∆ . 
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• 22
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d  corresponds to the distance between the two mean value vectors 
divided by the standard deviation of iR . 

 
 



Case 2: Independent components with Unequal Variance. 
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• The result can be interpreted in a new co-ordinate system  
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• Scale of each axis is changed so that the variances are all equal to 
one.  

• d  corresponds to the difference vector in this “scaled” coordinate 
system. 

• In the scaled coordinate system: ( ) 'm' il = ∆ ⋅R R . 
 



Case 3: Eigenvectors representation. 
Equal mean vectors. 
• We represent the R in a new coordinate system in which the 

components are statistically independent random variables. 
• The new set of coordinate aces is defined by the orthogonal unit 

vectors 1 2, , , N…φ φ φ   
 T

i j ijδ=φ φ  
• We denote the observation in the new coordinate system by ′r . 
• We select the orientation of the new system so that the components 

ir ′ and jr ′ are uncorrelated. 
• New component is expressed simply as a dot product: 
 i ir ′=′ r φ . 
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• The variance matrix in the new coordinate system is calculated as 
 T

i ij j jλ δ = Kφ φ . 
• The coordinate vectors should satisfy λ = Kφ φ. 
Properties of the K: 
• Because K is symmetric, its eigenvalues are real. 
• Because K is a covariance matrix, the eigenvalues are nonnegative.  
• If the roots iλ  are distinct, the corresponding eigenvectors are 

orthogonal. 
• If a particular root is of multiplicity M  the M  associated 

eigenvectors are linearly independent. 
 



• The mean difference vector 
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• The resulting sufficient statistic in the new coordinate system is 
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• There always exist a coordinate system for which the random 
variables are uncorrelated and that the new system is related to the 
old system by a linear transformation. 



Equal Mean vectors. 
• The mean vectors are equal 
 0i =m m m 
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• The mean value vector does not contain any information telling us 
which of the hypothesis is true. The likelihood test subtracts them 
from the received vector (we may assume 0=m ). 

• The difference of inverse matrices: 
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• Likelihood ratio test ( )
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Special cases. 
Case 1: Diagonal Covariance Matrix: Equal Variances. 
• In case of 1H  the ir  contains the same variable as on 0H  plus 

additional signal components that may be correlated. 
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Case 2: Symmetric Hypotheses, Uncorrelated Noise. 
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Conclusions. 
• The sufficient statistic for the general Gaussian problem is the 

difference between two quadratic forms 

 ( ) ( ) ( ) ( ) ( )0 0 0 1 1 1

1 1m Q m m Q m
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• A particular simple case was the one where the covariance matrixes of 

the hypotheses were equal. Then LLR test is ( ) T1
2l = ∆ ⋅ ⋅R m Q R . 

• And the performance is characterized by 2 Tm md = ∆ ⋅ ⋅∆Q . 

• The results described above can be obtained similarly for the M -

hypothesis case. 

  


