Composite Hypotheses testing

e In many hypothesis testing problems there are many possible
distributions that can occur under each of the hypotheses.

e The output of the source is a set of parameters (points in a parameter
space ).

e The hypothesis corresponds to subsets of .

e The probability density covering the mapping from the parameter
space to the observation space is denoted by Dy (R | 9) and is
assumed to be known for all values of # in .

e The final component is a decision rule.
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Composite hypothesis testing problem

Example:

e For two hypothesis the observed variable will be:
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Baysian formulation of the composite hypothesis testing problem.

e We assume that the parameter is a random variable 6 taking on the
values in .

Random variable 0

e The known probability density on € enables us to reduce the problem
to a simple hypothesis-testing problem by integrating over 6.

* Dy (R | 9) is interpreted as the conditional distribution of R given 6.
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Example

e We assume that the probability density governing m on H, is

1
V27o,,

e The likelihood ratio becomes:
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¢ By integrating and taking logarithm
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e When 6 is a random variable with an unknown density, the test
procedure is not clearly specified.

- Minimax test over the unknown density.

- To try several densities based on partial knowledge of 6 that is
available. In many cases the test structure will be insensitive to the
detailed behavior of the probability density.

0 nonrandom variable

e Because 0 has no probability density over which to average the Bayes
test in not meaningful. (We use Neyman-Pearson tests).

e Over all possible detectors that have a given PF the one that yields
the highest P is called Uniform Most Powerful (UMP) test.

e The best performance we could achieve would be obtained if an
actual test curve equals the bound for all M € y.

e For given P, a uniform most powerful UMP test to exist:

An UMP exist if we are able to design a complete likelihood ratio
test (including the threshold) for every M € y without knowing M .

e In general the bound can be reached for any particular 6 simply by
designing an ordinary LRT for that particular 6.

e The UMP test must be as good as any other test for every 6.
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A necessary and sufficient condition for UMP.

A UMP test exist if and only if the likelihood ratio test for every
0 € xcan be completely defined (including threshold) without
knowledge of 6.

If UMP does not exist.
Generalized likelihood ratio test.

The perfect measurement bound suggests that a logical procedure is to
estimate 6 assuming H is true, then estimate ¢ assuming H  is true,
and use these estimates in a likelihood ratio test as if they were correct.
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where 6 ranges over all 6 in H and 6 ranges over all § in H_
We make a ML estimate of 91, assuming that H | is true. We then

evaluate p o (R ] 91) for 6, = é1 and use this value in numerator.
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e A test contains a nuisance parameter. We are not directly concerned
with the parameter it enters into the problem since it affects the PDF
under H, and H .

e The GLRT decides H, if the fit to the data of the signal under H,
produces a much smaller error, as measured by 91 than a fit to the
signal under H, with estimated parameter 90

e For large data records the detector the GLRT easy to find.
e The conditions under which the asymptotic conditions hold are:
- When the data record is large and the signal is weak

- When the Maximum Likelihood Estimation (MLE) attains it
asymptotic PDF.

e The composite Hypothesis testing problem can be cast as parameter
test of the PDF.

e Consider a PDF p(R,0) where 6 is a p X1 vector of unknown
parameters.

e The parameter test is:
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e Where é1 is the MLE of 6 under H_, the unrestricted MLE.

. éo is the MLE of 6 under H , the restricted MLE.

e As N — 0o and for unbiased estimation the variance of the
estimation is given by the Cramer-Rao bound. We can express the

ML estimation of the parameter 91 and use this value in the GLRT
calculation:

Detection of Gaussially distributed random variables.

The general Gaussian problem
Hypotheses testing in case of Gaussian distribution
Equal Covariance Matrices.

Equal Mean vectors.

Definition.

e A set of random variables 7:,7,,...,7, is defined as jointly Gaussian if

all their linear combinations are Gaussian random variables.

e A vector r is a jointly Gaussian random vector when its components
are jointly Gaussian.

e In other words if
N
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is a Gaussian random variable for all finite G, then r is a Gaussian
vector.

¢ A hypothesis-testing problem is called a general Gaussian problem if
r‘H (R | H, ) is a Gaussian density on all hypotheses.

e We define:
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e Let the observation space to be N dimensional vector (or column
matrix) I:




e Under the hypothesis H, we assume that 1 is a Gaussian random
vector, completely specified by its mean vector and covariance
matrix.
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e The covariance matrix is
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e The test consists of finding the difference between two quadratic
forms.

Special case: Equal covariance matrices.
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e [(R) is a scalar Gaussian random variable obtained by linear

transform of jointly Gaussian random variables.




e The test can completely described by the distance between the means
of the two hypotheses when the variance was normalized to be equal
to one.
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e The performance for the equal covariance Gaussian case is completely

determined by the quadratic form.

Examples.
Case 1: Independent Components with Equal Variance.

e Each 7, has the same variance o’ and is statistically independent:
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o The sufficient statistics is just the dot product of the observed
vector R and the mean difference vector Am.
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d corresponds to the dlstance between the two mean value vectors
divided by the standard deviation of R .

Case 2: Independent components with Unequal Variance.
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e The result can be interpreted in a new co-ordinate system
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e Scale of each axis is changed so that the variances are all equal to
one.

e d corresponds to the difference vector in this “scaled” coordinate
System.

e In the scaled coordinate system: [(R)=Am'-R
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Case 3: Eigenvectors representation.
Equal mean vectors.

e We represent the R in a new coordinate system in which the
components are statistically independent random variables.

e The new set of coordinate aces is defined by the orthogonal unit
vectors @, Q,,...,Q,
09, =0,

e We denote the observation in the new coordinate system by r’.

e We select the orientation of the new system so that the components
r/ and 7”].’ are uncorrelated.

e New component is expressed simply as a dot product:
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e The variance matrix in the new coordinate system is calculated as
A6, =0 Ko,

e The coordinate vectors should satisfy A@ = K.

Properties of the K:

e Because K is symmetric, its eigenvalues are real.

e Because K is a covariance matrix, the eigenvalues are nonnegative.

e If the roots A are distinct, the corresponding eigenvectors are
orthogonal.

o If a particular root is of multiplicity M the M associated
eigenvectors are linearly independent.




e The mean difference vector

Aml =@, "Am
Amé = gAm
Am = ¢, Am

e The resulting sufficient statistic in the new coordinate system is
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e There always exist a coordinate system for which the random
variables are uncorrelated and that the new system is related to the
old system by a linear transformation.

Equal Mean vectors.

e The mean vectors are equal
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e The mean value vector does not contain any information telling us
which of the hypothesis is true. The likelihood test subtracts them
from the received vector (we may assume m = 0).

e The difference of inverse matrices:
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Special cases.
Case 1: Diagonal Covariance Matrix: Equal Variances.

e In case of H , the 7 contains the same variable as on H , blus
additional signal components that may be correlated.
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Case 2: Symmetric Hypotheses, Uncorrelated Noise.
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Conclusions.

e The sufficient statistic for the general Gaussian problem is the
difference between two quadratic forms

HR) = S (R7 —m])Q, (R—m,) (R~ )Q, (R —m,).

e A particular simple case was the one where the covariance matrixes of
the hypotheses were equal. Then LLR test is [(R) =+Am" - Q- R.
e And the performance is characterized by d*> = Am" - Q - Am.

e The results described above can be obtained similarly for the M -

hypothesis case.




