Composite Hypotheses testing

- In many hypothesis testing problems there are many possible distributions that can occur under each of the hypotheses.
- The output of the source is a set of parameters (points in a parameter space χ).
- The hypothesis corresponds to subsets of χ.
- The probability density covering the mapping from the parameter space to the observation space is denoted by $p_{\mathrm{r} \mid \theta}(\mathrm{R} \mid \theta)$ and is assumed to be known for all values of θ in χ.
- The final component is a decision rule.

Composite hypothesis testing problem

Example:

- For two hypothesis the observed variable will be:
$H_{0}: p_{r \mid H_{0}}\left(R \mid H_{0}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{R^{2}}{2 \sigma^{2}}\right)$
$H_{1}: p_{r \mid H_{1}}\left(R \mid H_{1}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(R-M)^{2}}{2 \sigma^{2}}\right), \quad M_{0} \leq M \leq M_{1}$

Baysian formulation of the composite hypothesis testing problem.

- We assume that the parameter is a random variable θ taking on the values in χ.

Random variable θ

- The known probability density on θ enables us to reduce the problem to a simple hypothesis-testing problem by integrating over θ.
- $p_{\mathrm{r} \mid \theta}(\mathbf{R} \mid \theta)$ is interpreted as the conditional distribution of \mathbf{R} given θ.
$\Lambda(\mathbf{R}) \triangleq \frac{p_{\mathbf{r} \mid H_{1}}\left(\mathbf{R} \mid H_{1}\right)}{p_{\mathbf{r} \mid H_{0}}\left(\mathbf{R} \mid H_{0}\right)}=\frac{\int_{\chi} p_{\mathbf{r} \mid \theta}(\mathbf{R} \mid \theta) p_{\theta \mid H_{1}}\left(\theta \mid H_{1}\right) d \theta}{\int_{\chi} p_{\mathbf{r} \mid \theta}(\mathbf{R} \mid \theta) p_{\theta \mid H_{0}}\left(\theta \mid H_{1}\right) d \theta}$

Example

- We assume that the probability density governing m on H_{1} is $p_{m \mid H_{1}}\left(M \mid H_{1}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{m}} \exp \left(-\frac{M^{2}}{2 \sigma_{m}^{2}}\right),-\infty<M<\infty$.
- The likelihood ratio becomes:

$$
\Lambda(R)=\frac{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(R-M)^{2}}{2 \sigma^{2}}\right) \frac{1}{\sqrt{2 \pi} \sigma_{m}} \exp \left(-\frac{M^{2}}{2 \sigma_{m}^{2}}\right) d M}{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{R^{2}}{2 \sigma^{2}}\right)} \underset{H_{0}}{\boldsymbol{H}_{1}} \eta
$$

- By integrating and taking logarithm
- When θ is a random variable with an unknown density, the test procedure is not clearly specified.
- Minimax test over the unknown density.
- To try several densities based on partial knowledge of θ that is available. In many cases the test structure will be insensitive to the detailed behavior of the probability density.

$$
R^{2} \underset{H_{0}}{\stackrel{H_{1}}{\lessgtr}} \frac{2 \sigma^{2}\left(\sigma^{2}+\sigma_{m}^{2}\right)}{\sigma_{m}^{2}}\left[\log \eta+\frac{1}{2} \log \left(1+\frac{\sigma_{m}^{2}}{\sigma^{2}}\right)\right]
$$

θ nonrandom variable

- Because θ has no probability density over which to average the Bayes test in not meaningful. (We use Neyman-Pearson tests).
- Over all possible detectors that have a given P_{F} the one that yields the highest P_{D} is called Uniform Most Powerful (UMP) test.
- The best performance we could achieve would be obtained if an actual test curve equals the bound for all $M \in \chi$.
- For given P_{F} a uniform most powerful UMP test to exist:

An UMP exist if we are able to design a complete likelihood ratio test (including the threshold) for every $M \in \chi$ without knowing M.

- In general the bound can be reached for any particular θ simply by designing an ordinary LRT for that particular θ.
- The UMP test must be as good as any other test for every θ.

A necessary and sufficient condition for UMP.

A UMP test exist if and only if the likelihood ratio test for every $\theta \in \chi$ can be completely defined (including threshold) without knowledge of θ.

If UMP does not exist.

Generalized likelihood ratio test.

The perfect measurement bound suggests that a logical procedure is to estimate θ assuming H_{1} is true, then estimate θ assuming H_{0} is true, and use these estimates in a likelihood ratio test as if they were correct.
$\Lambda_{g}(\mathrm{R})=\frac{\max _{\theta_{1}} p_{\mathrm{r} \mid \theta_{1}}\left(\mathrm{R} \mid \theta_{1}\right)}{\max _{\theta_{0}} p_{\mathrm{r} \mid \theta_{0}}\left(\mathrm{R} \mid \theta_{0}\right)} \underset{H_{H_{1}}}{\lessgtr} \gamma$
where θ_{1} ranges over all θ in H_{1} and θ_{0} ranges over all θ in H_{0} We make a ML estimate of θ_{1}, assuming that H_{1} is true. We then evaluate $p_{\mathrm{r} \mid \theta_{1}}\left(\mathrm{R} \mid \theta_{1}\right)$ for $\theta_{1}=\hat{\theta}_{1}$ and use this value in numerator.

- A test contains a nuisance parameter. We are not directly concerned with the parameter it enters into the problem since it affects the PDF under H_{0} and H_{1}.
- The GLRT decides H_{1} if the fit to the data of the signal under H_{1} produces a much smaller error, as measured by $\hat{\theta}_{1}$ than a fit to the signal under H_{0} with estimated parameter $\hat{\theta}_{0}$
- For large data records the detector the GLRT easy to find.
- The conditions under which the asymptotic conditions hold are:
- When the data record is large and the signal is weak
- When the Maximum Likelihood Estimation (MLE) attains it asymptotic PDF.
- The composite Hypothesis testing problem can be cast as parameter test of the PDF.
- Consider a PDF $p(\mathrm{R}, \theta)$ where θ is a $p \times 1$ vector of unknown parameters.
- The parameter test is:
$\Lambda_{g}(\mathrm{R})=\frac{p_{\mathrm{r} \mid \theta_{1}}\left(\mathrm{R} ; \hat{\theta}_{1}, H_{1}\right)}{p_{\mathrm{r} \mid \theta_{0}}\left(\mathrm{R} ; \theta_{0}, H_{0}\right)} \stackrel{H_{H^{2}}}{\stackrel{H_{0}}{\lessgtr}} \gamma$
- Where $\hat{\theta}_{1}$ is the MLE of θ under H_{1}, the unrestricted MLE.
- $\hat{\theta}_{0}$ is the MLE of θ under H_{0}, the restricted MLE.
- As $N \rightarrow \infty$ and for unbiased estimation the variance of the estimation is given by the Cramer-Rao bound. We can express the ML estimation of the parameter $\hat{\theta}_{1}$ and use this value in the GLRT calculation:

Detection of Gaussially distributed random variables.

The general Gaussian problem
Hypotheses testing in case of Gaussian distribution
Equal Covariance Matrices.
Equal Mean vectors.

Definition.

- A set of random variables $r_{1}, r_{2}, \ldots, r_{N}$ is defined as jointly Gaussian if all their linear combinations are Gaussian random variables.
- A vector \mathbf{r} is a jointly Gaussian random vector when its components are jointly Gaussian.
- In other words if
$z=\sum_{i=1}^{N} g_{i} r_{i} \triangleq \mathrm{G}^{\mathrm{T}} \mathrm{r}$
is a Gaussian random variable for all finite G^{T}, then \mathbf{r} is a Gaussian vector.
- A hypothesis-testing problem is called a general Gaussian problem if $p_{\mathbf{r} \mid H_{i}}\left(\mathbf{R} \mid H_{i}\right)$ is a Gaussian density on all hypotheses.
- We define:
$E(\mathbf{r})=\mathrm{m}$
$\operatorname{Cov}(\mathbf{r})=E\left[(\mathbf{r}-\mathrm{m})\left(\mathbf{r}^{\mathrm{T}}-\mathrm{m}^{\mathrm{T}}\right)\right] \triangleq \Lambda$
$M_{\mathrm{r}}(j \mathbf{v}) \triangleq E\left[e^{j \mathrm{v}^{\mathrm{T}} \mathrm{r}}\right]=\exp \left(j \mathrm{v}^{\mathrm{T}} \mathrm{m}-\frac{1}{2} \mathrm{v}^{\mathrm{T}} \Lambda \mathrm{v}\right)$
$p_{\mathbf{r}}(\mathbf{R})=\left[(2 \pi)^{N / 2}|\Lambda|^{1 / 2}\right]^{-1} \exp \left[-\frac{1}{2}\left(\mathbf{R}^{\mathrm{T}}-\mathrm{m}^{\mathrm{T}}\right) \Lambda^{-1}(\mathbf{R}-\mathrm{m})\right]$
- Let the observation space to be N dimensional vector (or column matrix) r :
$\mathbf{r}=\left[\begin{array}{c}r_{1} \\ r_{2} \\ \vdots \\ r_{N}\end{array}\right]$
- Under the hypothesis H_{1} we assume that \mathbf{r} is a Gaussian random vector, completely specified by its mean vector and covariance matrix.

$$
E\left[\mathbf{r} \mid H_{1}\right]=\left[\begin{array}{c}
E\left(r_{1} \mid H_{1}\right) \\
E\left(r_{2} \mid H_{1}\right) \\
\vdots \\
E\left(r_{N} \mid H_{1}\right)
\end{array}\right] \triangleq\left[\begin{array}{c}
m_{11} \\
m_{12} \\
\vdots \\
m_{1 N}
\end{array}\right] \triangleq \mathrm{m}_{1}
$$

- The covariance matrix is
$\mathbf{K}_{1} \triangleq E\left\{\left(r-m_{1}\right)\left(r^{T}-m_{1}^{T}\right) \mid H_{1}\right\}=\left[\begin{array}{cccc}K_{11} & K_{12} & \cdots & K_{1 N} \\ K_{21} & K_{22} & \cdots & K_{2 N} \\ \vdots & \vdots & \ddots & \vdots \\ K_{N 1} & K_{N 2} & \cdots & K_{N N}\end{array}\right]$
- The inverse of $\mathrm{K}_{1}=\mathrm{Q}_{1}^{-1}$
$\mathrm{K}_{1} \mathrm{Q}_{1}=\mathrm{Q}_{1} \mathrm{~K}_{1}=\mathrm{I}$
- The probability density of \mathbf{r} on H_{1}
$p_{\mathbf{r} \mid H_{1}}\left(\mathbf{R} \mid H_{1}\right)=\left[(2 \pi)^{N / 2}\left|K_{1}\right|^{1 / 2}\right]^{-1} \exp \left(-\frac{1}{2}\left(\mathbf{R}^{T}-\mathrm{m}_{1}^{T}\right) \mathrm{Q}_{1}\left(\mathbf{R}-\mathrm{m}_{1}\right)\right)$
- The probability density of \mathbf{r} on H_{0}
$p_{\mathbf{r} \mid H_{1}}\left(\mathbf{R} \mid H_{0}\right)=\left[(2 \pi)^{N / 2}\left|K_{0}\right|^{1 / 2}\right]^{-1} \exp \left(-\frac{1}{2}\left(\mathbf{R}^{T}-\mathrm{m}_{0}^{T}\right) \mathrm{Q}_{0}\left(\mathbf{R}-\mathrm{m}_{0}\right)\right)$
- Likelihood ratio test

$$
\begin{gathered}
\Lambda(\mathbf{R}) \triangleq \frac{p_{\mathbf{r} \mid H_{1}}\left(\mathbf{R} \mid H_{1}\right)}{p_{\mathbf{r} \mid H_{0}}\left(\mathbf{R} \mid H_{0}\right)}=\frac{\left|K_{0}\right|^{1 / 2} \exp \left(-\frac{1}{2}\left(\mathbf{R}^{T}-\mathrm{m}_{1}^{T}\right) \mathrm{Q}_{1}\left(\mathbf{R}-\mathrm{m}_{1}\right)\right)}{\left|K_{1}\right|^{1 / 2} \exp \left(-\frac{1}{2}\left(\mathbf{R}^{T}-\mathrm{m}_{0}^{T}\right) \mathrm{Q}_{0}\left(\mathbf{R}-\mathrm{m}_{0}\right)\right)} \underset{H_{1}}{H_{1}} \eta \\
\frac{1}{2}\left(\mathrm{R}^{T}-\mathrm{m}_{0}^{T}\right) \mathrm{Q}_{0}\left(\mathrm{R}-\mathrm{m}_{0}\right)-\frac{1}{2}\left(\mathrm{R}^{T}-\mathrm{m}_{1}^{T}\right) \mathrm{Q}_{1}\left(\mathrm{R}-\mathrm{m}_{1}\right) \underset{H_{0}}{H_{1}} \\
\ln \eta+\frac{1}{2} \ln \left|\mathrm{~K}_{1}\right|-\frac{1}{2} \ln \left|\mathrm{~K}_{0}\right| \triangleq \gamma
\end{gathered}
$$

- The test consists of finding the difference between two quadratic forms.

Special case: Equal covariance matrices.

$\mathrm{K}_{1}=\mathrm{K}_{0} \triangleq \mathrm{~K}$.
$\mathrm{Q}=\mathrm{K}^{-1}$.
$\left(\mathrm{m}_{1}^{T}-\mathrm{m}_{0}^{T}\right) \mathrm{Q}_{0} \mathrm{R} \underset{H_{0}}{\stackrel{H_{1}}{\lessgtr}} \ln \eta+\frac{1}{2}\left(\mathrm{~m}_{1}^{T} \mathrm{Qm}_{1}-\mathrm{m}_{0}^{T} \mathrm{Qm}_{0}\right) \triangleq \gamma$.
$\Delta \mathrm{m} \triangleq \mathrm{m}_{1}^{T}-\mathrm{m}_{0}^{T}$.
$l(\mathrm{R}) \triangleq \Delta \mathrm{m}^{T} \mathrm{QR} \triangleq \mathrm{R}^{T} \mathrm{Q} \Delta \mathrm{m} \underset{H_{0}}{\stackrel{H_{1}}{\lessgtr}} \gamma$.

- $l(\mathrm{R})$ is a scalar Gaussian random variable obtained by linear transform of jointly Gaussian random variables.
- The test can completely described by the distance between the means of the two hypotheses when the variance was normalized to be equal to one.
$d^{2} \triangleq \frac{\left[E\left(l \mid H_{1}\right)-E\left(l \mid H_{0}\right)\right]^{2}}{\operatorname{Var}\left(l \mid \mathrm{H}_{0}\right)}$
$E\left(l \mid H_{1}\right) \triangleq \Delta \mathrm{m}^{T} \mathrm{Qm}_{1}$
$E\left(l \mid H_{0}\right) \triangleq \Delta \mathrm{m}^{T} \mathrm{Qm}_{0}$
$\operatorname{Var}\left(l \mid H_{0}\right)=E\left\{\left[\Delta \mathrm{~m}^{T} \mathrm{Q}\left(\mathrm{R}-\mathrm{m}_{0}\right)\right]\left[\left(\mathrm{R}^{T}-\mathrm{m}_{0}^{T}\right) \mathrm{Q} \Delta \mathrm{m}\right]\right\}$
$\operatorname{Var}\left(l \mid H_{0}\right)=\Delta \mathrm{m}^{T} \mathrm{Q} \Delta \mathrm{m}$
$d^{2}=\Delta \mathrm{m}^{T} \mathrm{Q} \Delta \mathrm{m}$
- The performance for the equal covariance Gaussian case is completely determined by the quadratic form.

Examples.

Case 1: Independent Components with Equal Variance.

- Each r_{i} has the same variance σ^{2} and is statistically independent: $\mathbf{K}=\sigma^{2} \mathrm{I}$,
$\mathbf{Q}=\frac{1}{\sigma^{2}} \mathrm{I}$,
- The sufficient statistics is just the dot product of the observed vector \mathbf{R} and the mean difference vector $\Delta \mathrm{m}$.
$l(\mathbf{R})=\frac{1}{\sigma^{2}} \Delta \mathbf{m}^{\mathrm{T}} \cdot \mathbf{R}$

Case 2: Independent components with Unequal Variance.

$$
\mathbf{K}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \sigma_{N}^{2}
\end{array}\right], \mathbf{Q}=\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}^{2}} & 0 & 0 & 0 \\
0 & \frac{1}{\sigma_{2}^{2}} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \frac{1}{\sigma_{N}^{2}}
\end{array}\right]
$$

- The sufficient statistic is $l(R)=\sum_{i=1}^{N} \frac{\Delta m_{i} \cdot R_{i}}{\sigma_{i}^{2}}$.

$$
d^{2}=\sum_{i=1}^{N} \frac{\left(\Delta m_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

- The result can be interpreted in a new co-ordinate system
$\Delta \mathbf{m}^{\prime}=\left[\begin{array}{c}\frac{1}{\sigma_{1}} m_{1} \\ \frac{1}{\sigma_{2}} m_{2} \\ \vdots \\ \frac{1}{\sigma_{N}} m_{N}\end{array}\right]$ and $R_{i}^{\prime}=\frac{1}{\sigma_{i}} R_{i}$.
- Scale of each axis is changed so that the variances are all equal to one.
- d corresponds to the difference vector in this "scaled" coordinate system.
- In the scaled coordinate system: $\quad l(\mathbf{R})=\Delta \mathrm{m}^{\prime} \cdot \mathbf{R}_{i}^{\prime}$.

Case 3: Eigenvectors representation.

Equal mean vectors.

- We represent the R in a new coordinate system in which the components are statistically independent random variables.
- The new set of coordinate aces is defined by the orthogonal unit vectors $\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \ldots, \boldsymbol{\varphi}_{N}$ $\boldsymbol{\varphi}_{i}^{T} \boldsymbol{\varphi}_{j}=\delta_{i j}$
- We denote the observation in the new coordinate system by \mathbf{r}^{\prime}.
- We select the orientation of the new system so that the components r_{i}^{\prime} and r_{j}^{\prime} are uncorrelated.
- New component is expressed simply as a dot product:

$$
r_{i}^{\prime}=\mathbf{r}^{\prime} \boldsymbol{\varphi}_{i} .
$$

- The variance matrix in the new coordinate system is calculated as $\lambda_{i} \delta_{i j}=\boldsymbol{\varphi}_{j}^{T} \mathbf{K} \boldsymbol{\varphi}_{j}$.
- The coordinate vectors should satisfy $\lambda \boldsymbol{\varphi}=\mathbf{K} \boldsymbol{\varphi}$.

Properties of the \mathbf{K} :

- Because \mathbf{K} is symmetric, its eigenvalues are real.
- Because \mathbf{K} is a covariance matrix, the eigenvalues are nonnegative.
- If the roots λ_{i} are distinct, the corresponding eigenvectors are orthogonal.
- If a particular root is of multiplicity M the M associated eigenvectors are linearly independent.
- The mean difference vector
$\Delta m_{1}^{\prime}=\boldsymbol{\varphi}_{1}^{T} \Delta \mathbf{m}$
$\Delta m_{2}^{\prime}=\boldsymbol{\varphi}_{2}^{T} \Delta \mathbf{m}$
$\Delta m_{N}^{\prime}=\boldsymbol{\varphi}_{N}^{T} \Delta \mathbf{m}$
- The resulting sufficient statistic in the new coordinate system is
$l(R)=\sum_{i=1}^{N} \frac{\Delta m_{i}^{\prime} \cdot R_{i}^{\prime}}{\lambda_{i}}$.
- There always exist a coordinate system for which the random variables are uncorrelated and that the new system is related to the old system by a linear transformation.

Equal Mean vectors.

- The mean vectors are equal
$\mathbf{m}_{i}=\mathbf{m}_{0} \triangleq \mathbf{m}$
$\frac{1}{2}\left(\mathbf{R}^{T}-\mathbf{m}^{T}\right)\left(\mathbf{Q}_{0}-\mathbf{Q}_{1}\right)(\mathbf{R}-\mathbf{m}) \underset{H_{0}}{\stackrel{H_{1}}{\lessgtr}} \ln \eta+\frac{1}{2} \ln \frac{\left|\mathrm{~K}_{1}\right|}{\left|\mathrm{K}_{0}\right|}=\gamma$
- The mean value vector does not contain any information telling us which of the hypothesis is true. The likelihood test subtracts them from the received vector (we may assume $\mathbf{m}=0$).
- The difference of inverse matrices:

$$
\mathbf{Q} \triangleq \mathbf{Q}_{0}-\mathbf{Q}_{1}
$$

- Likelihood ratio test $l(\mathbf{R}) \triangleq \mathbf{R}^{T} \Delta \mathbf{Q} \mathbf{R} \underset{H_{0}}{\stackrel{H_{1}}{\lessgtr}} 2 \gamma$

Special cases.

Case 1: Diagonal Covariance Matrix: Equal Variances.

- In case of H_{1} the r_{i} contains the same variable as on H_{0} plus additional signal components that may be correlated.
$H_{0}: r_{i}=n_{i}$
$H_{1}: r_{i}=s_{i}+n_{i}$
$\mathbf{K}_{0}=\sigma_{n}^{2} \mathbf{I} ; \mathbf{K}_{1}=\mathbf{K}_{s}+\sigma_{n}^{2} \mathbf{I}$
$\mathbf{Q}_{0}=\frac{1}{\sigma_{s}^{2}} \mathbf{I} ; \mathbf{Q}_{1}=\frac{1}{\sigma_{s}^{2}}\left(\mathbf{I}+\frac{1}{\sigma_{s}^{2}} \mathbf{K}_{S}\right)^{-1}=\frac{1}{\sigma_{s}^{2}}(\mathbf{I}-\mathbf{H})$
$H=\left(\sigma_{s}^{2} I+K_{s}\right)^{-1} K_{s}=\mathbf{Q}_{0}-\mathbf{Q}_{1}=\Delta \mathbf{Q}$
$l(\mathbf{R}) \triangleq \frac{1}{\sigma_{s}^{2}} \mathbf{R}^{T} \mathbf{H R} \underset{H_{0}}{\stackrel{H_{1}}{\lessgtr}} 2 \gamma$

Case 2: Symmetric Hypotheses, Uncorrelated Noise.

$$
\begin{gathered}
H_{0}: \begin{array}{c}
r_{i}=s_{i}+n_{i} \\
r_{i}=n_{i} \\
H_{1}: \\
r_{i}=n_{i} \\
r_{i}+n_{i}
\end{array}
\end{gathered}
$$

$$
\mathbf{K}_{0}=\left[\begin{array}{cc}
\mathbf{K}_{s}+\sigma_{n}^{2} \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \sigma_{n}^{2} \mathbf{I}
\end{array}\right]
$$

$$
\mathbf{K}_{1}=\left[\begin{array}{cc}
\sigma_{n}^{2} \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{K}_{s}+\sigma_{n}^{2} \mathbf{I}
\end{array}\right]
$$

$$
\begin{aligned}
& \Delta \mathbf{Q}=\left[\begin{array}{cc}
\frac{1}{\sigma_{n}^{2}} \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{K}_{s}+\sigma_{n}^{2} \mathbf{I}\right)^{-1}
\end{array}\right]-\left[\begin{array}{cc}
\left(\mathbf{K}_{s}+\sigma_{n}^{2} \mathbf{I}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \frac{1}{\sigma_{n}^{2}} \mathbf{I}
\end{array}\right] \\
& \Delta \mathbf{Q}=\left[\begin{array}{ll}
\mathbf{H} & \mathbf{0} \\
\mathbf{0} & \mathbf{H}
\end{array}\right] \\
& \mathbf{R}=\left[\begin{array}{l}
\mathbf{R}_{\mathbf{1}} \\
\mathbf{R}_{2}
\end{array}\right] \\
& l(\mathbf{R})=\frac{1}{\sigma_{n}^{2}} \mathbf{R}_{1}^{\mathrm{T}} \mathbf{H} \mathbf{R}_{\mathbf{1}}-\mathbf{R}_{2}^{\mathrm{T}} \mathbf{H} \mathbf{R}_{2} \underset{H_{0}}{\mathrm{H}_{1}} 2 \gamma
\end{aligned}
$$

Conclusions.

- The sufficient statistic for the general Gaussian problem is the difference between two quadratic forms

$$
l(\mathbf{R})=\frac{1}{2}\left(\mathbf{R}^{T}-\mathrm{m}_{0}^{T}\right) \mathrm{Q}_{0}\left(\mathbf{R}-\mathrm{m}_{0}\right)-\frac{1}{2}\left(\mathbf{R}^{T}-\mathrm{m}_{1}^{T}\right) \mathrm{Q}_{1}\left(\mathbf{R}-\mathrm{m}_{1}\right) .
$$

- A particular simple case was the one where the covariance matrixes of the hypotheses were equal. Then LLR test is $l(\mathbf{R})=\frac{1}{2} \Delta \mathbf{m}^{\mathrm{T}} \cdot \mathbf{Q} \cdot \mathbf{R}$.
- And the performance is characterized by $d^{2}=\Delta \mathrm{m}^{\mathrm{T}} \cdot \mathbf{Q} \cdot \Delta \mathrm{m}$.
- The results described above can be obtained similarly for the M hypothesis case.

