
Performance evaluation. 

• A basic performance measures of a binary signal detection system 
with given decision rule are the two conditional error probabilities FP  
and MP . 

• In many cases the optimum test can be derived but an exact 
performance is impossible to calculate.  

• We can resort to bounds of the error probabilities or approximate 
expressions for these probabilities. 

• The problem of interest is a general binary hypothesis test. 
• The likelihood ratio test is:  
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• The variable ( )Rl  is a random variable whose probability density 
depends on which hypothesis is true.  

• If two densities are known, then FP  and MP  are given by 
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• The difficulty is that it is often hard to find ( )|
|

i
il H

p L H , and even if 
it can be found it is cumbersome.  

• We can estimate the error by calculating the bounds for error 



Gaussian multidimensional decision. 
The Bayes test for general M -hypothesis problem can be expressed as 
following: 
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• We minimize the cost function by selecting the i  that gives the 
smallest value for given R . 

• If 0, 0,1, 2, , 1iiC i M= = −…  
 , , , 0,1, 2, , 1ijC C i j i j M= ≠ = −…  

• The equivalent test becomes: 
 Compute ( )|iP H R , 0, , 1i M= −…  and choose the largest. 
• By choosing the largest we exclude it from contributing to the cost. 
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• The Bayes test becomes: Compute  
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Symmetric signal sets.  
• In this specific case calculation of the error probability is greatly 

simplified by the “completely symmetry” of the geometrical 
configuration of the { }is . 

• By the complete symmetry we mean that any re-labeling of the signal 
points can be undone by rotation of coordinates, translation, and/or 
inversion of axes. 

• Given:  
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leads to a congruent decision regions and thus to a conditional 
probability of correct decision that is independent of the particular 
signal transmitted:  

 ( )| a constantip correct H =  



• The error performance of a congruent-decision region receiver is 
invariant to the actual source statistics. 

• A receiver designed to be optimal under the assumption of equally 
likely messages is a maximum likelihood receiver. 

• When { }is  are completely symmetric the maximum likelihood 
receiver is a minimax receiver. 

 
 
 



The union bound. 
• An approximation to the error probability for any set of M  equally 

likely signals { }is  in white Gaussian noise. 
• Pairwise error probability  

 { }i jp s s→ . 

• An error occurs when is  is transmitted and the received vector r is 
closer to one of signals ,js j i≠  than it is to is  

 ( ) { }|ij i i jp e s p s s= →  , 
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 where ij i jd s s= −  is Euclidean distance. 



• If ije is used to denote the event that r is closer to js  when is  is 

transmitted, we have: 
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• Since the probability of a union of events cannot exceed the sum of 
the individual probabilities, we have a union bound. 
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• By averaging over the signal set 
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• For any set of M  equally likely equal-energy orthogonal signals in 
AWGN channel the probability of error is bounded by: 
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• For bounding the error it suffices to know all the distances ijd among 
signals in constellation. 

• The union bound becomes tighter and tighter as 0N  decreases, i.e. 
when ( )P e  decreases, so that for low enough error probabilities it 
provides a good approximation to their exact values.  

 



The union Bhattacharyya bound 
• A simpler form of the union bound can be obtained by using a bound 

to the pairwise error probability exceeds the exact value. 
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Some other useful bounds 
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Source rate 
• Given a message source that produces a sequence of discrete symbols, 

we are interested in characterizing how much transmission capability 
is required to communicate the source output to a distant terminal. 

• This can be characterized how many hypotheses (messages) in the 
time interval can correctly be separated at the receiver. 

• For a set of M  equally likely hypothesis (messages) in any time 
interval T  we define the source rate R as: 

 2
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T
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• The maximal rate that the communication system can satisfy 
satisfactory when constrained in power is called channel capacity. 

 



Bit-by-Bit and Block-Orthogonal signaling 

• For the same value of bE  different communication systems yield 
different performance. 

• Assume K RT=  equally likely binary digits is communicated by 
two different schemes: 
• Bit-by-Bit 

- System transmits K  nonoverlapping pulses. 
- Each pulse has the same waveshape and is positive when input bit 

is 1 and negative when input bit is 0. 
• Block-Orthogonal 

- T he signaling scheme uses a signal set of 2K  orthogonal pulses, 
each having energy s bE KE= .  



- The choice of transmitted signal is made by observing the entire 
input sequence at once and transmitting the i-th pulse when the 
binary number specified by this sequence is i. 

 



Bit-by-Bit signaling 
• We associate the 2KM =  possible signals with the 2K  vertices of a 
K -dimensional hypercube. 

• The probability of at least error with such a signal set is  

 ( ) ( ) ( )1 1 1 1K RTp e p p= − − = − −  
• For additive white Gaussian noise (AWGS) channel the probability of 

error for binary decision between two antipodal signals of energy bE  
is 
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• For any choice of R and bE  the probability of error tends to 1 when 
T  becomes large. 



• For fixed T  the probability of error can be made small only by 
increasing energy expended per bit. 

• The distance between nearest neighbor remains fixed as K  increases. 
• The number of nearest neighbors and the number of dimensions 

occupied by the signal set increases linearly with K . 
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Block-Orthogonal signaling 
• For example one out of 2K  orthogonal pulses is transmitted every T  

second. 
• Recall that for any set of M  equally likely equal-energy orthogonal 

signals in AWGN channel the probability of error is bounded by 
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• By substituting  2 2K RTM = =  and s sb
E KE TP= = . 
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• The probability of error approaches zero exponentially with increasing 

T , as long as the rate R satisfies the bound  

 
0 0

1 0.72
2 ln 2
s sP PR
N N

< ≈ , 
0

2 ln 2 1.39bE
N
> ≈  

• By increasing K  we can force the probability of error to be as close 

to zero as we wish, provided that 
0
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• The distance between the nearest neighbors grows linearly with K . 

• The increase of distance is achieved by introducing a new dimension 

for each of the additional signals and re-scaling the amplitude. 
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Error control codes.  

• Techniques to control the error probability are based on the addition 
of redundancy to the information sequence. 
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• Source producing a binary sequence – data stream, sR , formed from 
independent identically distributed random variables. 

• Encoder maps the data stream into a code stream cR . 
• Data stream may be segmented into data words. 
• Segmented code streams form code words. ( ),n k  block code consist 

the code works of n  bits and data word of k  bits. 
• A channel code is the set of 2k  n -tuples of bits. 
• Encoder is the set of the 2k  pairs ( ),u x  where u  is a data word. 
• The redundancy of a code is r n k= − . 
 



Types of codes. 

• The block code is an ( ),n k  code and the ratio c
kR
n

is the rate of 
the code. 

• If the n  bits of the code word depends not only on the k  bits of the 
data word, but also on some previous data words, the code is a tree 
code. 

• Tree codes with a special memory and linearity structure are 
convolutional codes. 

 



Benefits due to channel encoding. 
• Benefits of the channel coding compared with the uncoded schemes. 
• The source emits binary digits at a rate of sR bits s  and the encoder 

represents each data word of k  source bits using cn k R bits= . 

• To keep the pace of the source the transmission speed of the channel 
must be increased to the values s cR R  binary symbols per second. 
(the required bandwidth must be increased by the same factor.) 

• The use of channel coding decreases the bandwidth efficiency with 
respect to the uncoded transmission by factor 1 cR . 

• Coding decreases the energy of channel symbols to the value cbE R . 

• More channel symbols will be incorrectly demodulated than with 
uncoded transmission.  



• Bandwidth efficiency is decreased and more errors in the demodulated 
sequence are to be expected.  

• At receiver we attempt to compensate the large number of errors at 
the demodulator output by the error-correcting capabilities of the 
decoder.  

• A coded transmission should trade bandwidth efficiency for a better 
overall error performance. 

• The decrease in the required power for the coded system is referred to 
as coding gain.  

• The overall error performance of the coded scheme depends on the 
implementation of efficient algorithms for error detection and 
correction.  

 



• In Gaussian channel the coding gain, which depends on value of the 
bit error probability, increases with the signal-to-noise ration and 
tends to an asymptotic value. 

• For low values of the signal-to-noise ratio, 
there can be a crossing between the 
uncoded and coded curves, meaning that 
the coding gain becomes negative. In other 
words there is a limit to what a code can 
do in terms of improving a bad channel. 
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Transmission errors. 
• Error detection. Determination by the decoder whether errors are 

present in a received word. 
• Undetectable errors. The error pattern causes the received word to be 

a valid word other than the transmitted word. 
• Error correction. The arithmetic of algebraic structure of the code is 

used to determine which of the valid code words is most likely to 
have been sent, given the erroneous received word. 

• Decoder error. The decoder selects a code word other than that which 
was actually transmitted. 



Decoder types. 
• Assume a binary transmission.  
• The goal of forward error correction (FEC) system is to minimize the 

probability of decoder error given a received word r . 
Hard decision decoding  
• The demodulator output is quantized to two levels  [1 0]. 
• The decoder attempts to recover the information sequence by using 

the code word redundancy for either detecting or correcting the errors 
that ate present at the demodulator output.  
(In this model a binary coherent modulation and AWGN channel, the 
combination of modulator, channel, and demodulator is equivalent to 
a binary symmetric channel (BSC)). 



Unquantized soft decision decoding 
• Binary input continuous output channel. 
• The unquantized output of the demodulator. 
• The receiver derives the sufficient statistics and supplies it to the 

decoder, which performs the estimation of the information sequence. 
• Decoder stores the n  outputs corresponding to each sequence of n  

binary waveforms and builds 2kdecision variables.  
• The decoder can take advantage of the additional information 

contained in the unquantized samples that represent each individual 
binary transmitted waveform.  

Quantized soft-decision decoding. 
• Binary input q  -ary output discrete channel. 
• The demodulator output is quantized to q levels with 2q > .  



Maximum posteriori decoder. Identifies the code word ic  that 
maximizes ( )|ip c c r= . 
Maximum likelihood decoder. Identifies the code word ic  that 
maximizes ( )| ip r c c= . 

Bayes rule ( )
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Linear block codes 
• The block of n  digits generated by the encoder depends only on the 

corresponding block of k  digits generated by the source.  
• From the 2n  possible code words in a binary block code of length n  

we select 2kM =  code words to form a code. 
• Coder maps a block of k  information bits into a code work of length 

n  
• The encoding and decoding 

functions involve the arithmetic 
operations of addition and 
multiplication performed on the 
code words. 
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Properties of Linear Codes 
• The linear combination of any set of code words is a codeword. 
• The minimum distance of a linear code is equal to weight of a code 

word with minimal weight. 
• The undetectable error patterns for a linear code word are 

independent of the code word transmitted and always consist of the 
set of all nonzero code words. 

 



Example: Hamming code ( )7, 4  

 5 1 2 3

6 2 3 4

7 1 2 4

, 1, 2, 3, 4i ix u i
x u u u
x u u u
x u u u

= =
= + +
= + +
= + +

 

• An encoder is called systematic when the first k  digits in the code 
word are a replica of the information digits in the data word, and the 
remaining ( )n k−  digits are parity checks on the k  information 
digits. 

• The encoding rule can be represented by the generator k n×  matrix 
G. 

• The code word x  can be calculated by multiplying the data word u  
with the generator matrix. 



=x uG 
• For the ( )7, 4  Hamming code 
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Parity check matrix 
• Associated with any linear ( ),n k  code is the dual code of dimension 
( )n k− . 

• The dual code is a linear ( ),n n k−  code with 2n k−  code vectors. 
• The code vectors of the dual code are in the null space of the ( ),n k  

code. 
• The dual code generator matrix H consists of ( )n k−  linearly 

independent code vectors selected from the null space of G matrix. 
• The code word of the ( ),n k  code is orthogonal to every row of the 

matrix H:  
  0′ ′= =xH uGH . 
• If G is systematic then | n k−

 ′=  H P I . 
• H is called parity check matrix.  



Example 
For the ( )7, 4  Hamming code 

1 1 1 0 1 0 0
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Error detection and error correction capabilities of a block code. 
• The decoder recomputes the ( )n k−  parity checks using the first k 

received bits, and compares them with the ( )n k−  received parity 
checks. If they match the received sequence is a code word otherwise, 
and error is detected. 

• An error pattern is detected whenever at least one of the ( )n k−  
controls on parity checks fails.  

• Multiplication of the parity check matrix with received symbols gives 
a parity check vector S called syndrome.  

 ′=s yH  
• The received symbols can be expressed in the form  
 = +y x e, where 1 2e , , , ne e e =  …  is an error vector. 
• The syndrome associated with a sequence y is a zero vector if and 

only if y is a code word. 



• Decoder can detect all channel errors represented by vectors e that 
are not code words. 

• Which of the error vectors e occurred can not be decides based on 
the syndrome. 

• ML decoding is achieved with minimum Hamming distance decision.  
• The “ best” decoding algorithm decides for the code word ix  which is 

closest to y . 
• The decoding algorithm is implemented by assigning to each code 

word a decision region containing the subset of all the received 
sequences that are closer to it than to any other.  

• An error vector with no more than ( )min 1 /2t d = −    errors produces 
a received sequence lying inside the correct decision region. Error 
correction is therefore possible. 

 



Distance of a code. 
• Hamming weight of a word s , denoted ( )

Hw s , is the number of 
nonzero coordinates in s . 

• Hamming distance between two words, ( )0 1 1, , , nv v v v −= …  and 
( )0 1 1, , , nw w w w −= … , is the number of coordinates in which they 

differ. 
• The Eucledian distance between ( )0 1 1, , , nv v v v −= …  and 

( )0 1 1, , , nw w w w −= … , is  

 ( ) ( ) ( ) ( )2 2 2

0 0 1 1 1 1, n nEd v w v w v w v w− −= − + − + + −…  

• The minimum distance of a block code is the minimum Hamming 

distance between all distinct pairs of code words in the codeset. 



Minimum distance and error 

• Let mind  be minimum distance of the code. 
• A linear block code ( ),n k  with minimum distance mind  can detect all 

error vectors of weight not greater than ( )min 1d − . 
• Decoder can detect all channel errors represented by vectors e  that 

are not code words.  

• A linear block code ( ),n k  with minimum distance mind  can correct all 

error vectors containing no more than ( )min 1 /2t d = −    errors, 

where  a  denotes the largest integer contained in a . The code is a t - 
error correcting code and is often denoted as a ( ), ,n k t  code.  

  
 


