Tutorial 5

Exercise 1
DC level in AWGN with unknown Amplitude.

We have N samples with unknown amplitude A. The channel is known to be
AWGN channel with noise variance o”.

H :A=0,

H :A=0.

0

We have a hypothesis testing problem:

Where in case of H, A is an unknown constant.

Find the General Likelihood Ratio Test.

Solution 1
Recall that the GLRT is
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The likelihood ratio test is:
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The Maximum Likelihood Estimation for A4 is found by maximizing:
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By maximizing this we can express the estimation of A as the mean
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Taking the logarithm we have
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We decide H, if: R* >/,

Exercise 2

The observation consists of a set of values of the random variables, 7,7 T
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The s, and n, are independent, identically distributed random variables with
densities N (0,0,) and N (0,0, ) respectively, where o, is known and o, is

unknown.
1. Does the UMP test exist?

2. If the answer to part 1 is negative, find the generalized LRT.

Solution 2

We can find a posteriori distributions for both hypotheses:
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The test is simple division of these distributions
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The LRT test can not be specified without knowing o2 .
UMT test does not exist.
Generalized LRT

ML estimate of © = o7 when H, is true
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Substituting this for o7 in the LRT in part 1 and denoting
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Exercise 3

Consider the detection of a signal s, embedded in AWGN with variance o’ based on
the observed samples 7. for 7 = 0,1,...,2N — 1. The signal is given by
A n=01..,N—1

0 0 n=N,N+1,...,2N -1

A n=201..N—-1

17124 n=N,N+1,....2N -1

Assume that A > 0 and find the NP detector as well as its detection performance.

Solution 3
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We can multiply with ;—A and subtract 4NA’. That changes the comparison

level but does not change the test.
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The test is to take the mean of the last N samples.
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The test statistics is Gaussian for both hypothesis
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