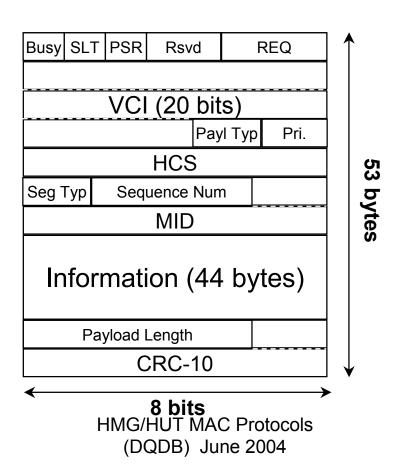
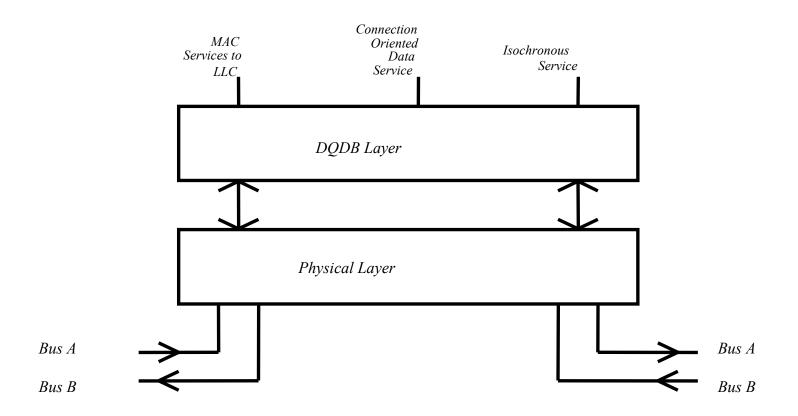

- Distributed Queue Dual Bus (DQDB)
- DQDB is a MAN.
- Unlike FDDI, DQDB is an IEEE standard: 802.6

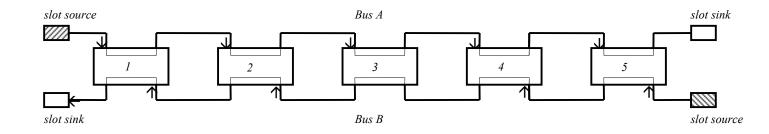

DQDB (cont'd)

Topology: Dual Bus

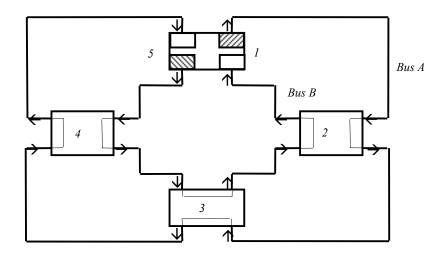
DQDB Frame Format

53-byte frame called a "cell"

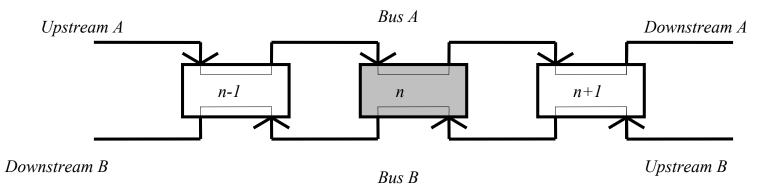



DQDB MAC Sublayer

- Head-ends generate cells in both directions
- To transmit, a host must know whether the destination is to its right or its left
 - If right, the host must send on one bus
 - If left, the host must send on the other bus
- A "Distributed Queue" is used to make sure that cells are transmitted on a first-come first-serve basis


Distributed Queueing

- Each host keeps two counters, CD and RC
- Procedure for sending a cell:
 - Set the request bit in a non-busy cell passing on the reverse bus.
 Copy the RC counter to the CD counter, and reset the RC counter to zero.
 - As the request cell passes on the reverse bus, each host on the path observes it and increments its RC counter
 - When an empty cell passes on the forward bus, the hosts decrement their RC counters and CD counters
 - If RC and CD equal zero when an empty cell passes on the forward bus, it may be used to send the message


(a)

(b)

HMG/HUT MAC Protocols (DQDB) June 2004

- Transmitting Data
 - -Node acquires slot
 - -Sets header
 - -Copies data into slot
 - -Cells propagate to end of bus
 - (absorbed by sink)
 - -Copied by intended destination on way

The terms upstream and downstream are relative to node n

A fragment of a DQDB network

HMG/HUT MAC Protocols (DQDB) June 2004

- Services
 - -CONS services
 - Pre-Arbitrated (PA) (reserved)
 - -MAC layer services
 - Queue Arbitrated (QA) (available)
 - Distributed Queue
 - Node gains access when its slot reaches head of Q

essentially distributed Q allows access to bus in an orderly way

Distributed Queue

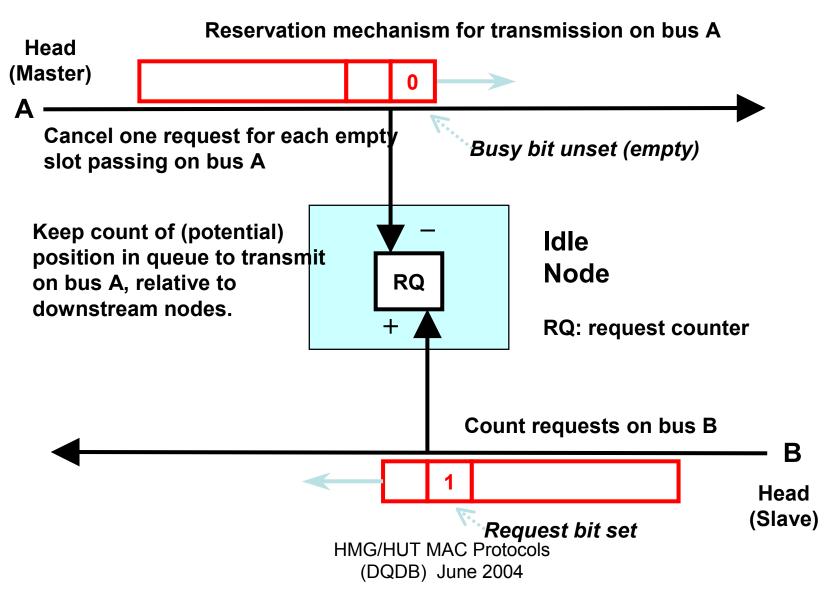
- Each node is aware of relative position of all other nodes
- Correct bus must be chosen to transmit data
- Distributed Q is independent of physical size of network

In general

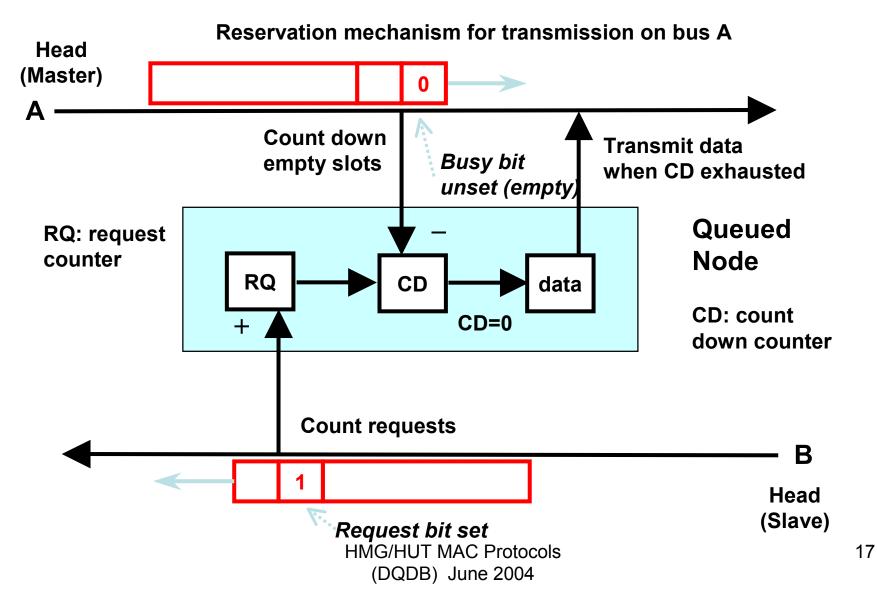
- -one bus to send data to nodes located to left
- -other bus to send data to nodes located on right
- –nodes competing with each other for access to bus

Implementation of distributed Q

- 1st octet Access Control Field
- Slot overhead 2 bits (ACF)
 - –Busy (B) bit
 - set when node acquires slot
 - -Request (R) bit
 - set by node wishing to transmit


- Node wishing to transmit on Bus A
 - Notify all nodes upstream that they are joining
 Q
 - Set first available R bit on Bus B
 - Why must nodes only notify upstream nodes?
 - How does node know when an available slot has its name on it?

- When to transmit?
- When node is inactive
 - -counts requests passing on Bus B
 - –decrements count for every empty slot that passes on Bus A


-Thus, state of R counter at node shows length of Q of cells waiting to be transmitted by all downstream nodes HMG/HUT MAC Protocols (DQDB) June 2004

- When node is ready to transmit
 - -Sets first available R bit on Bus B
 - (joining Q for Bus A)
 - –R Counter is copied to a separate Count-Down (CD) counter
 - -CD counter is decremented by every passing available slot passing on Bus A
 - -R counter is cleared and counting begins again.
 - (Gives length of Q behinf cell to be transmitted)
 - -CD counter of zero indicates the node has reached top of Q (DQDB) June 2004

DQDB: Distributed Queue

DQDB: Distributed Queue...(contd.)

DQDB: slots, data segments

- Slot types:
 - Queued: conventional data traffic (aysnchronous)
 - Pre-arbitrated: for isochronous support
 - 125µs frames, 8 kHz framing clock, allows TDM use:
 1 byte/frame equivalent to 64 kbps
 - 1 slot/frame equivalent to approx. 3 Mbps
- Packet or MAC frame segmentation
 - like ATM AAL3/4
- VCI
 - enables nodes to recognize which traffic to receive
 - in combination with byte offset in segment, identifies prearbitrated channel
 - channel slots allocated and preformatted by head ends
 - broadcast / multicast supported

HMG/HUT MAC Protocols (DQDB) June 2004

DQDB: fairness, SMDS

- Queued access: fair for all stations?
 - No: stations at the ends receive different service to those in the middle; downstream stations may be starved by upstream activity.
 - Partial remedy:
 - slot re-use: enable use of slot by nodes downstream of receiver
 - complicates nodes
 - increases utilization
 - not a complete remedy
- DQDB provided basis for definition of SMDS service
 - SMDS carefully defined (by Bellcore) to be entirely compatible with subset of DQDB operation and technology independent
 HMG/HUT MAC Protocols (DQDB) June 2004