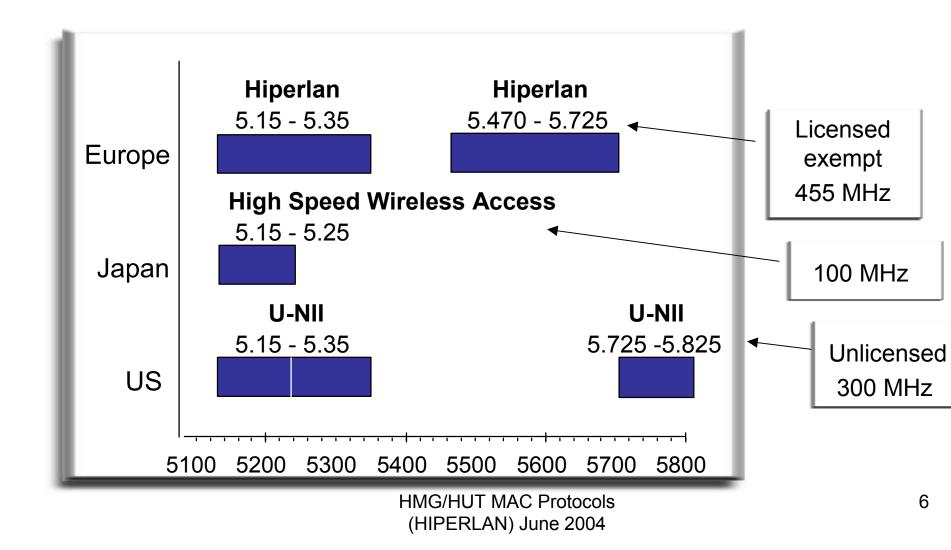

HIPERLAN (High-Performance Local Area Network)

- Part of ETSI(European Telecommunication Standard Institution) BRAN (Broadband Radio Access Network)
- Operational Frequency: 5.2 GHz
- Currently Available data rate : up to 54Mbps: HIPERLAN/2

Wireless "Data" Solutions

HMG/HUT MAC Protocols (HIPERLAN) June 2004 3

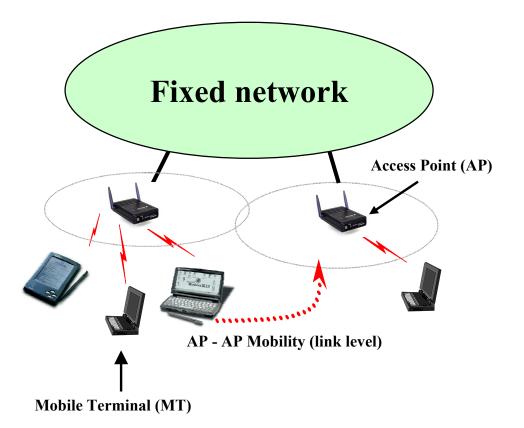

Requirements

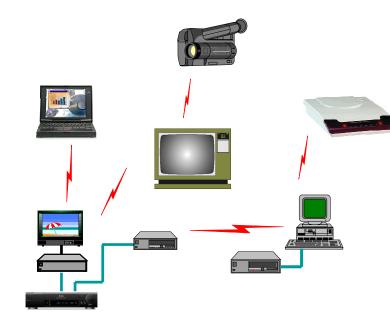
- Core network independent with QoS support for real time services (VoIP, Video)
 - Support of IP transporting networks, ATM networks, 3rd
 Generation, Firewire, etc.
 - Packet network based on connection-oriented wireless link
- Radio access network specifications (physical layer, data link control layer and convergence layer)
 - Interoperability standard with conformance test specifications
- No frequency planning
 - Dynamic Frequency Selection
- Capable of handling different interference and propagation situations
 - "Link Adaptation" with multiple modulation and channel coding schemes Supporting asymmetrical traffic load fluctuating in uplink and downlink as well as for different users

Requirements...(contd.)

- A cellular multi-cell radio network capable of offering access, switching and management functions within a large coverage area
 - A point-to-multipoint topology with mandatory centralized mode and optional direct mode
 - Mobility management
 - Power management
 - Uplink power control, downlink power setting, sleep mode
- Usage in indoor and outdoor environments
- Multicast and broadcast
- Scalable security
 - Different key encryption: 56 bit and 168 bit
 - Authentication: Optional pre-shared or public key

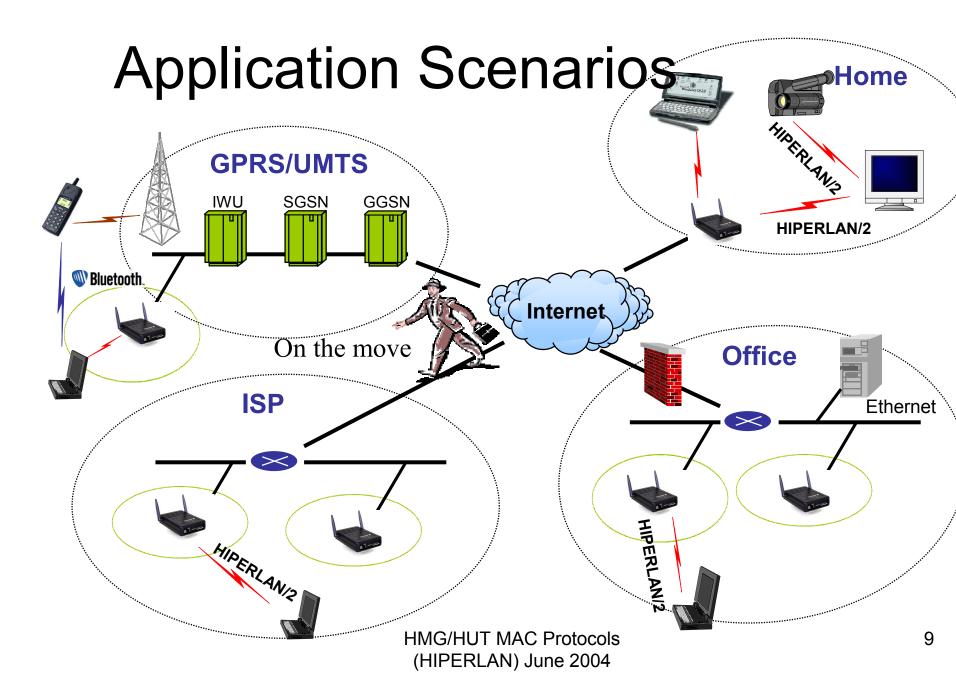
Spectrum Allocation at 5 GHz




- MAC layer supports both asynchronous and synchronous (time bound) applications
 - Interactive multimedia services
 - High quality video distribution
 - Client-Server applications
- HIPERLAN/1
 - Was a best-effort delivery system
- HIPERLAN/2
 - Provides QoS guarantees and supports mobility up to 10 m/s
 - Uses a variant of CSMA/CA called Elimination Yield -Non Preemptive Priority Multiple Access (EY-NPMA) 7 (HIPERLAN) June 2004

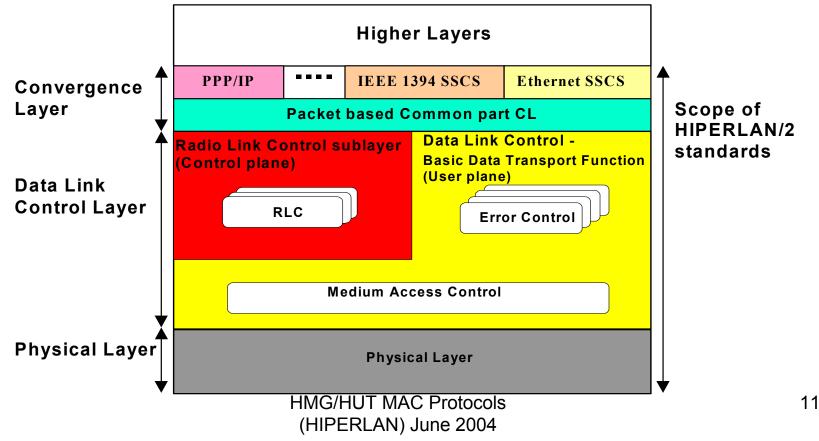
Operation Modes

Infrastructure based network:


Ad-hoc network:

No compromise on QoS in ad-hoc mode!

HMG/HUT MAC Protocols (HIPERLAN) June 2004

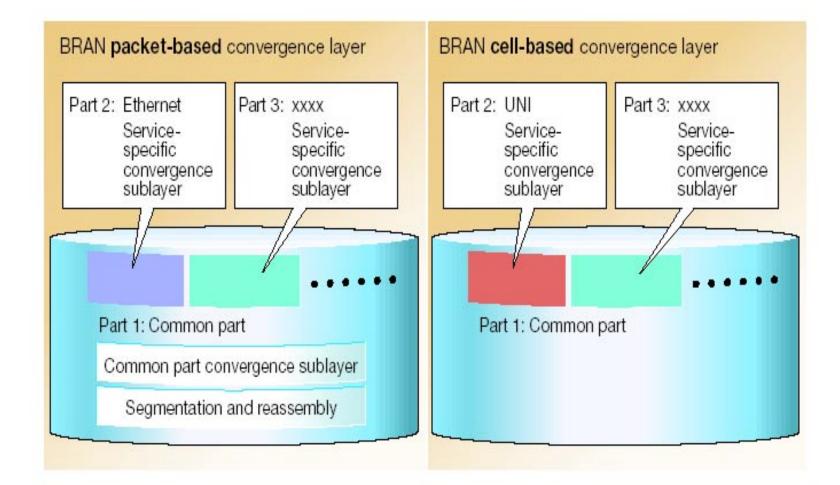


Features of HIPERLAN

- MAC supports centralized mode (CM) (APs) and direct mode (DM) (ad-hoc)
- Ad-hoc mode assumes "single cell" area
- For multihop HIPERLANs (nodes outside radio range), some nodes become forwarder
- Radio Cells need to overlap to implement forwarding mechanism
- Forwarders buffer packets
- Mobility may create fragmented LANs. They need to remerge

Protocol Architecture

 Standardization scope: air interface, service interfaces of the radio access system and the convergence layer functions


Modulations

Mode	Modulation	Code rate	PHY bit rate	bytes/OFDM		
1	BPSK	1/2 6 Mb		3.0		
2	BPSK	3/4	9 Mbps	4.5		
3	QPSK	1/2	12 Mbps	6.0		
4	QPSK	3/4	18 Mbps	9.0		
5	16QAM	9/16	27 Mbps	13.5		
6	16QAM	3/4	36 Mbps	18.0		
7	64QAM 3/4		54 Mbps	27.0		

HMG/HUT MAC Protocols (HIPERLAN) June 2004

Functions of Convergence Layer

- Adapts services request from higher layers to the service offered by DLC
- Coverts higher layer packets (Fixed or variable lengths) to fixed length SDUs at DLC
- Two types of Convergence Layer
 - Cell based (for ATM type traffic)
 - Packet Based (for Ethernet type traffic)

Convergence Layer

- Multiple convergence layers
- One single convergence layer active at a time
- Mapping between higher layer connections/priorities and DLC connections/priorities

- Segmentation and re-assembly to / from 48 bytes packets
- Priority mapping from IEEE 802.1p
- Address mapping from IEEE 802
- Multicast & broadcast handling
- Flexible amount of QoS classes

Service Specific Firewire Ethernet ATM UMTS PPP Part CP Common Part (CP) Cell based Packet based Higher layer packet (e.g. Ethernet packet) CL: Flags, 12 bits Payload, 384 bits Flags, 12 bits Payload, 384 bits Mapping higher layer packets onto layers of CRC Header DLC: Header DLC SDU, 396 bits CRC DLC SDU HiperLAN/2 DLC LCH PDU, 432 bits **PHY:** Preamble SCH SCH LCH LCH LCH SCH SCH LCH LCH PHY burst **HMG/HUT MAC Protocols** (HIPERLAN) June 2004

DLC: Medium Access Control

- TDMA/TDD with a fixed frame duration of 2 ms
- 3 transmission possibilities: AP to MT (Downlink), MT to AP (Uplink) and MT to MT (Direct Link)
- Centralized scheduling (not specified)
 - Air interface frame creation in the AP
 - Resource allocation by the AP
 - Resource requests from MTs
 - Dynamic assignment of capacity in uplink and downlink no fixed slot structure is mandatory, but possible for CBR type services
 - Could consider QoS and link adaptation modes
 - Transmission of Data PDU and ARQ PDU without collisions
- Peer-to-peer and multicast support

DLC: Medium Access Control...(contd.)

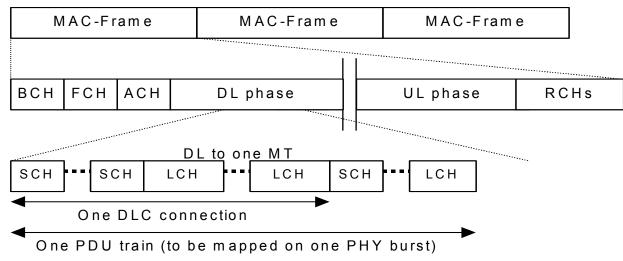
- Random access scheme
 - Association and resource request transmissions from MTs
 - Random access in mobile stations: slotted ALOHA with exponential increase of contention window
 - Processing random access in the AP: acknowledgements of random access in the next frame
- Sector antenna support

MAC Frame Channels: Logical Channel

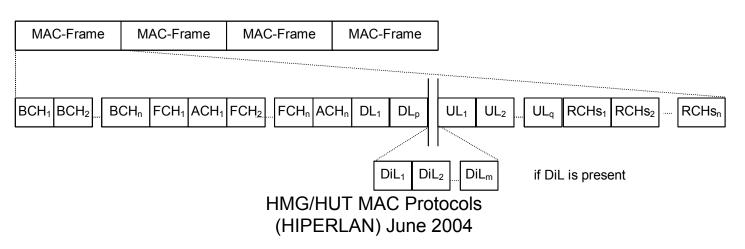
Logical and Transport channels are used to construct MAC frame

- Logical Channel:
 - A generic term for any distinct data path which describes a specific da transfer service offered by the MAC entity
 - Defined by the type of information it carries and the interpretation of th value in the corresponding messages
- Some important Logical Channels
 - BCCH (Broadcast Control CHannel): used in downlink conveying the necessary broadcast information concerning the whole radio cell e.g. scrambler seed, access point ID, network ID, etc.
 - FCCH (Frame Control CHannel): used in downlink conveying information describing the structure of the MAC frame visible at the air interface (resource grant announcement)
 - RACH (Random Access CHannel): used by MTs in uplink to send signalling data (resource request, association request) for DLC or RLC HMG/HUT MAC Protocols (HIPERLAN) June 2004

MAC Frame Channels: Logical


- Some important Logical Channesl: Contd
 - RFCH (Random access Feedback CHannel): used in downlink to inform the MTs that have used the RACH in the previous MAC frame about the result of their access attempts.
 - RBCH (RLC Broadcast CHannel): used in downlink (when necessary) conveying broadcast CONTROL information concerning the whole radio cell, e.g. broadcast RLC message, MAC ID in the association process, encryption seed, etc.
 - DCCH (Dedicated Control Channel): used in downlink, direct link and uplink conveying RLC messages
 - LCCH (Link Control CHannel): used bi-directional to transmit ARQ and discard messages between peer error control functions
 - UDCH (User Data CHannel): used bi-directional to transmit user data

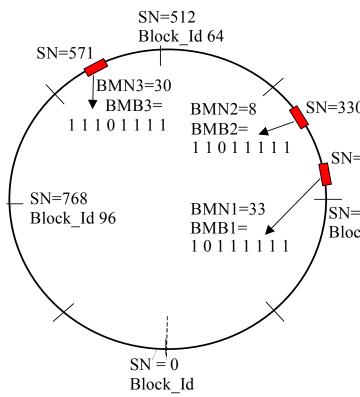
MAC Frame Channels: Transport Channel Logical channels are mapped onto different transport channels


- Logical channels are mapped onto different transport channels which describe the basic message format and are the basic elements for constructing message sequence of each user
 - BCH (Broadcast CHannel): carries BCCH transmitted once per MAC frame per sector antenna
 - FCH (Frame CHannel): used in downlink for carring FCCH with variable amount of data
 - ACH (Access feedback CHannel): used in downlink for transporting RFCH
 - LCH (Long Transport CHannel): used for transporting user data and control information
 - SCH (Short CHannel): used for transporting short control information
 - RCH (Random CHannel): used in uplink for transmitting resource request or association request (HIPERLAN) June 2004

Basic MAC Frame Structure

• A single sector system

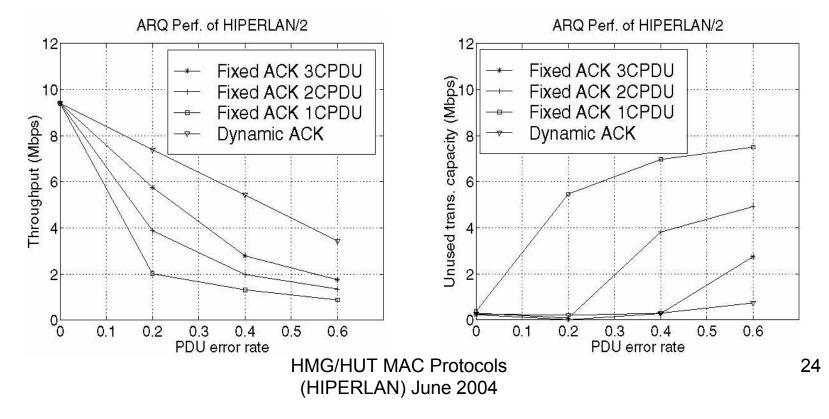
• A multiple sectors system


DLC: Error Control

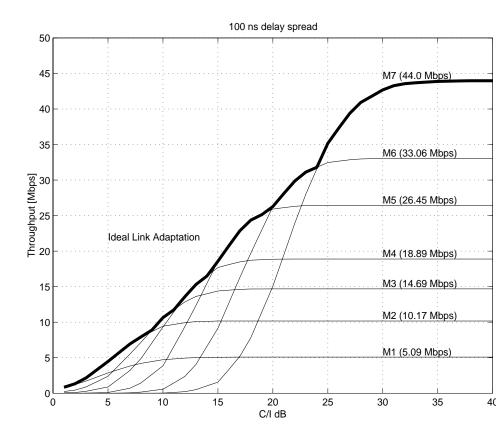
- Scaleable Error Control: three EC modes
 - Acknowledged mode for reliable transmission by using ARQ
 - Repetition mode for reliable transmission by repeating LCHs
 - Unacknowledged mode for transmissions with low latency
- SR-ARQ with partial bitmap
 - retransmission efficiency as conventional SR
 - Optimized overhead and delay for acknowledgements
 - acknowledgements are sent not for every erroneous packet but bitmap for several ones
 - Dynamical management of bitmap packets
 - Cumulative Acknowledgement and Flow Control possible
 - Discarding capability
 - efficient for real time applications
- Short MAC frame (2 ms) allows re-transmission even for voice
 HMG/HUT MAC Protocols
 (HIPERLAN) June 2004

Partial Bitmap Basics

- Numbering of PDU from 0 to 1023 (Sequence Number)
- Grouping 8 PDUs into 1 Block, totally 127 Blocks
- ACK of a PDU: BitMap Block (BMB) & BitMap Number (BMN)
- In the ARQ C-PDU: 3 BMBs & 3 BMNs
- BMN1=Block_Id1, BMN2=Block_Id1 -Block_Id2, BMN3=Block_Id3 - Block_Id2


ARQ Message Format (Uplink)											
	8	7	6	5	4	3	2	1			
Octet 1			LCH PHY Mode								
Octet 2	CAI	BMN 1									
Octet 3	BMB 1										
Octet 4	SCH PHY Mode				BMN 2						
Octet 5	BMB 2										
Octet 6	FC	ABIR	FU		BMN3						
Octet 7	BMB 3										
Octet 8	CRC-16										
Octet 9											

Dynamic Acknowledgement


- Problems with fixed ACK
 - low utilisation of channel capacity
 - bottleneck of feedback channel
 - deferring retransmissions

- Dynamic ACK
 - # of ARQ PDUs based on receiver status
 - ABIR-bit used by receiver in MT
 - high utilisation of channel capacity

Link Adaptation

- Link Adaptation
 - Code rate and modulation alphabet (7 modes) adaptive to current propagation and interference environments
- Link throughput versus C/I
 - Link quality measurement (C/I) in access point and mobile terminal
 - rms delay spread 100 ns
 - Selective-repeat ARQ,
 - ideal link adaptation

RLC

(Radio Link Control) Sub layer

- Used for exchanging data between APs and MTs (Mobile Terminals) for association/reassociation
- Signaling uses dedicated control channel
- Error Control
 - Acknowledged Mode: Uses selective repeat ARQs
 - Repetition Mode: Repeats data bearing DLS PDUs
 - No Acks
 - Receiver accepts PDUs with sequence number in window
 - Unacknowledged mode without re-transmission HMG/HUT MAC Protocols (HIPERLAN) June 2004

DLC: Radio Link Control

- Connection handling
 - Setup / release of DLC connections
 - Peer-to-peer (ad-hoc)
 - Multicast
- Security
 - Authentication
 - Encryption key distribution
 - Alternative security negotiation

- Management functions
 - Mobility
 - Association / deassociation
 - Handover
 - Location update
 - Radio resource management
 - Dynamic frequency selection
 - Power management
 - Sleep mode
 - uplink and downlink power control

- HIPERLAN/2 uses *Power Control* to decrease interference
- MAC frame size 2ms (fixed)

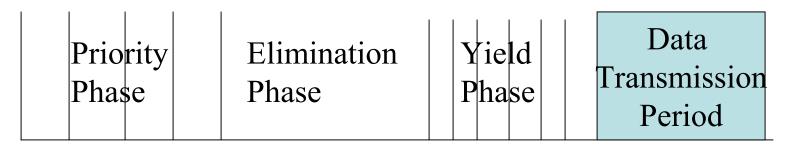
EY-NPMA

- Three phases in the protocol
 - Priority resolution
 - Elimination
 - Yield
- Four Priority Levels (residual life time dependent)
- PHY operates at two data rates
 - Low Bit rate channel (1.4706 Mb/s)
 - High Bit rate channel (23.5294 Mb/s in HIPERLAN/1)

Priority resolution Phase

- STA listen to channel for specified (priority dependent) interval. If the channel is free, STA announces its operation at high bit rate channel otherwise defers
- Same priority STAs survive

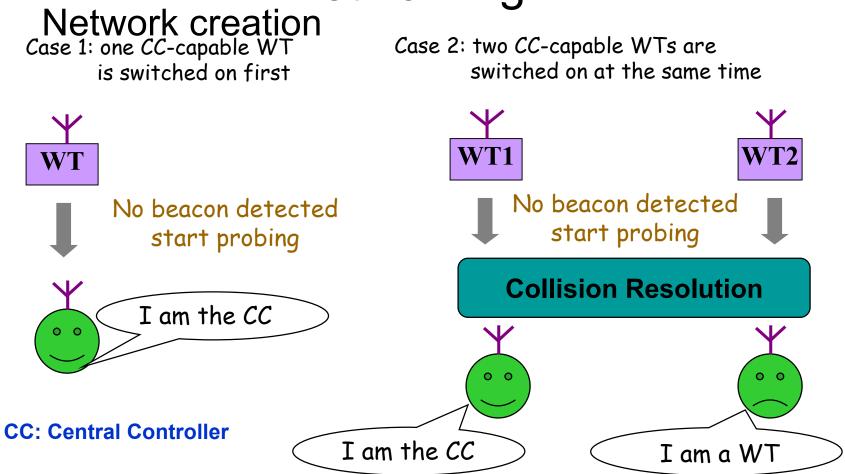
Elimination Phase

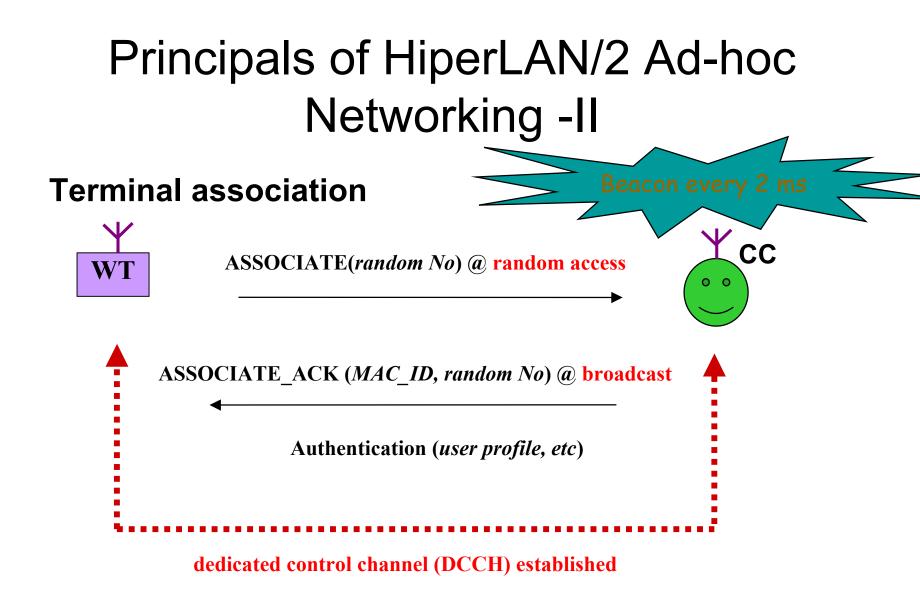

- Surviving STAs send random length burst (from the specified discrete PDF)
 - STAs listen to channel after burst transmission
 - If any other burst detected then STA defers otherwise goes to the next phase (longest burst STAs survive)

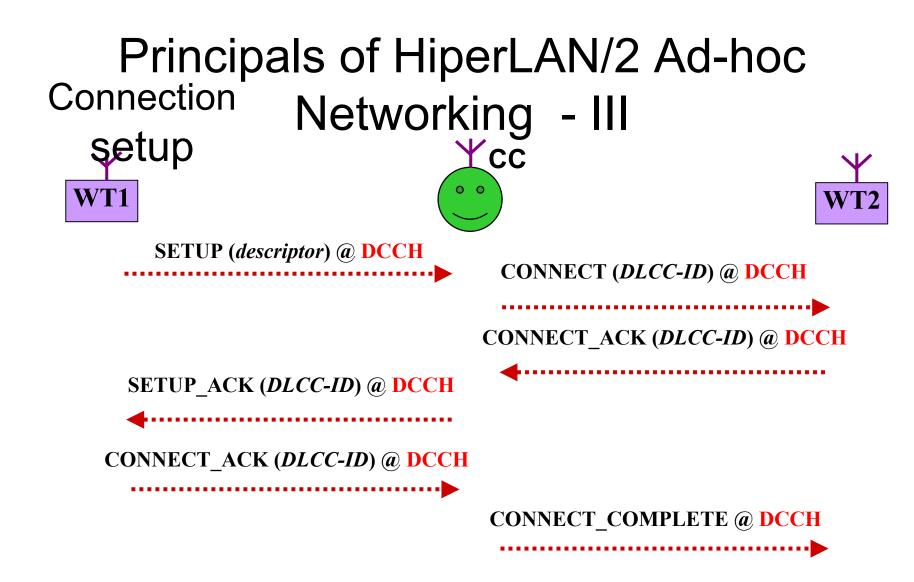
Yield Phase

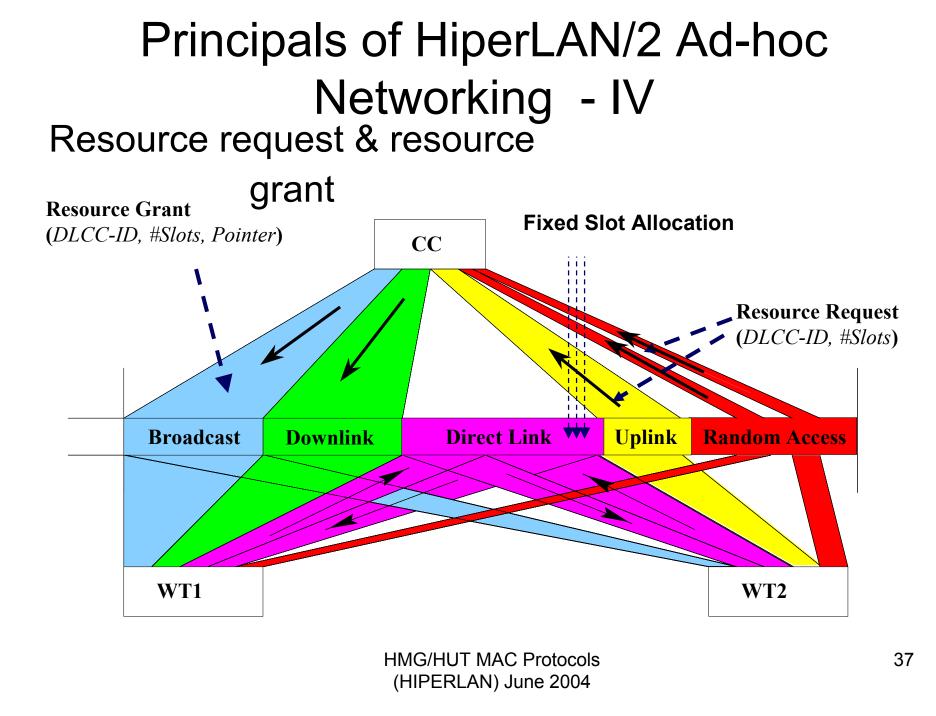
- Surviving STAs listen to the channel again
 - Listen time random (using discrete upper bounded PDF)
 - If a STA listens any transmission in the listen duration it defers, otherwise it survives

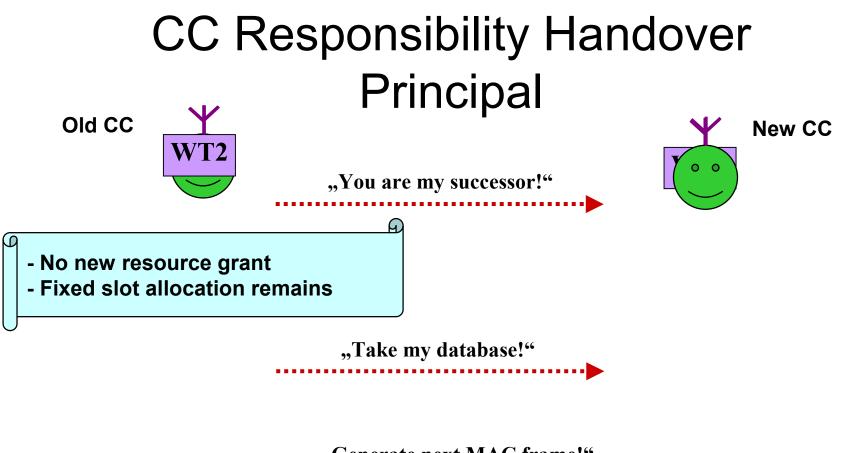
Transmission Phase


Surviving STA transmit data




RandomRandomLengthInterval


HMG/HUT MAC Protocols (HIPERLAN) June 2004


Principals of HiperLAN/2 Ad-hoc Networking

"Generate next MAC frame!"

HMG/HUT MAC Protocols (HIPERLAN) June 2004

Conclusions

- HiperLAN/2 for Emerging Nomadic Computing
 - Scalable User Security
 - Wireless LAN and Wireless Access
 - Mobile Datacom
 - up to 54 Mbps
 - Mobility
 - Quality of Service
 - Environments
 - Home
 - Office
 - Public
 - Network Topology
 - Infrastructure based networks
 - "Ad-hoc" networks
 HMG/HUT MAC Protocols
 (HIPERLAN) June 2004

BRAN Information

- HiperLAN/2 Technical Specifications
 - Free of charge @ http://www.etsi.org/bran (click on work items)
 - PHY: ts_101475v010101
 - DLC (basic functions): ts_10176101v010101
 - RLC: ts_10176102v010101
 - Packet based CL Common Part: ts_10149301v010101
 - Packet based CL Ethernet part: ts_10149302v010101
 - Cell based CL Common Part: ts_10176301v010101
 - Cell based CL UNI Part: ts_10176302v010101
- Contacts:
 - jamshid.khun-jush@eed.ericsson.se (BRAN Chair & HiperLAN2 Coordinator)