

Communication channels and medium

- A **physical medium** is an inherent part of a communications system
 - Wires (copper, optical fibers), wireless radio spectra
- Communications systems include electronic or optical devices that are part of the transmission path followed by a signal
 - Equalizers, amplifiers, signal conditioners (regenerators)
 - Medium determines only part of channels behavior. The other part is determined how transmitter and receiver are connected to the medium and what is transmitted in the channel
 - Therefore, by telecommunication channel we refer to the combined end-to-end physical medium and attached devices
- Often the concept "filter" models a channel. This is due to the fact that all telecommunication channels can be always modeled as filters. Their parameters can be

3

- deterministic
- random
- time variable
- linear/non-linear

Channels parameters

- Characterized by
 - attenuation[dB/km], transfer function
 - impedance $[\Omega]$, matching
 - bandwidth[Hz], data rate
- Transmission impairments change channel's effective properties
 - system internal/external interference
 - cross-talk leakage power[dB] from other users
 - channel may introduce inter-symbolic interference (ISI)
 - channel may absorb interference from other sources
 - wideband noise [W/Hz]
 - distortion, linear (uncompensated transfer function)/nonlinear (non-linearity in circuit elements)

7

 Channel parameters are a function of frequency, transmission length, temperature ...

A 2B₇ Data rate limits B. -B, -1/28, 1/28, Data rate depends on: channel bandwidth, the number of levels in transmitted signal and channel SNR (received signal power) For an *L* level signal with theoretical sinc-pulse signaling transmitted maximum rate is (Nyqvist rate) $r = 2B_{\tau} = r_b / n = r_b / \log_2(L) \Longrightarrow r_b = 2B_{\tau} \log_2(L), L = 2^n$ There is absolute maximum of information capacity that can be transmitted in a channel we discussed earlier, namely Shannon's channel capacity: $C = B \log_2(1 + SNR)$ Example: A transmission channel has the bandwidth $B_{\tau} = 1 \text{ MHz}$ and SNR = 63. Find the appropriate bit rate and number of signal levels. Solution: Theoretical maximum bit rate is $C = B\log_2(1 + SNR) = 10^6 \log_2(64) = 6 \text{ Mbps}$ In practice, a smaller bit rate can be achieved. Assume $r_b \approx 4$ Mbps=2B_Tlog(L) $\Longrightarrow L = 4$ 8 *r*: symbol rate, r_n : bit rate

Unshielded and shielded twisted pairs attenuation compared

• Electronic Industries Association has specified in EIA-568-A twisted pairs for different applications.

Frequency (MHz)	Category 3 UTP	Category 5 UTP	150 Ω STP	Category 3 UTP	Category 5 UTP	150 Ω STI
1	2.6	2.0	1.1	41	62	58
4	5.6	4.1	2.2	32	53	58
16	13.1	8.2	4.4	23	44	50.4
25		10.4	6.2	, <u> </u>	32	47.5
100		22.0	12.3			38.5
300			21.4			31.3

References

- 1 A. Burr: Modulation & Coding
- 2 A.B. Carlson: Communication Systems (4th ed)
- 3 S.J. Halme: Televiestintäjärjestelmät (isbn 951 672 238 5)
- 4 Ahlin, Zhanders: Principles of Wireless Communications
- 5 W. Stallings: Wireless Communications and Networks
- 6 A. Leon-Garcia, I. Widjaja: Communication Networks (extracts from the instructors slide set)
- 7 T. Rappaport: Wireless Communications, Prentice Hall
- 8 Telia, Ericsson: Understanding Telecommunications, Student Litterature

29