

Bandwidth and Q-factor				
The bandwidth is inversely proportional to Q-factor:				
B	$f_{\rm dB} = f_0 / Q \qquad ($	for the tank c	ircuit: $Q = F$	$R\sqrt{C/L}$
System design is easier if the Q-factor is kept in the range: $10 < Q < 100$				
 For broadband circuits Q is small that requires the overall resistance to be made small. For very narrow band circuits resistor is very large and the resonance circuit is a high-impedance device whose interface can be sensitive to interference. Also, components might turn out difficult to realize if Q is outside of this range. Some practical examples: 				
	Frequency band	Carrier frequency	Bandwidth	
	Longwave radio Shortwave radio VHF Microwave	100 kHz 5 MHz 100 MHz 5 GHz 100 GHz	2 kHz 100 kHz 2 MHz 100 MHz 2 GHz	
	Optical	$5 + 10^{14}$ Hz	10 ¹³ Hz	6
Helsinki University of Techn	ology, Communications Labo	ratory, Timo O. Korhonen		

